
On Nondeterminism in Programmed
Grammars

Lukáš Vrábel and Petr Zemek
Brno University of Technology, Faculty of Information Technology

Božetěchova 2, 612 00 Brno, CZ
http://www.fit.vutbr.cz/∼{ivrabel, izemek}

Research Group of Formal Models Seminar, 2011-03-02



Outline

Preliminaries and Introduction

Part I: Degree of Nondeterminism

Part II: Number of Nondeterministic Rules

Part III: Overall Nondeterminism

Concluding Remarks and Open Problems

Acknowledgment

This presentation is partially based on: A. Meduna, L. Vrábel,
P. Zemek: On Nondeterminism in Programmed Grammars,
In: AFL’11: Automata and Formal Languages 2011 (submitted).

On Nondeterminism in Programmed Grammars 2 / 13



Programmed Grammars – Definition

Definition

A programmed grammar is a quintuple

G = (N, T , S, Ψ, P),

where
• N is an alphabet of nonterminals;
• T is an alphabet of terminals (N ∩ T = ∅);
• S ∈ N is the starting nonterminal;
• Ψ is an alphabet of rule labels;
• P is a finite set of rules of the form

(r : A→ x , σr ),

where r ∈ Ψ, A ∈ N, x ∈ (N ∪ T )∗, and σr ⊆ Ψ.

On Nondeterminism in Programmed Grammars 3 / 13



Programmed Grammars – Definition

Definition

The relation of a direct derivation, symbolically denoted by⇒,
is defined over (N ∪ T )∗ ×Ψ as follows:

(u, r)⇒ (v , s)

if and only if

u = u1Au2, v = u1xu2, (r : A→ x , σr ) ∈ P, and s ∈ σr .

Definition

The language generated by G, L(G), is defined as

L(G) = {w ∈ T ∗ | (S, r)⇒∗ (w , s), for some r , s ∈ Ψ}.

P . . . the family of languages generated by programmed
grammars

On Nondeterminism in Programmed Grammars 4 / 13



Programmed Grammars – Definition

Definition

The relation of a direct derivation, symbolically denoted by⇒,
is defined over (N ∪ T )∗ ×Ψ as follows:

(u, r)⇒ (v , s)

if and only if

u = u1Au2, v = u1xu2, (r : A→ x , σr ) ∈ P, and s ∈ σr .

Definition

The language generated by G, L(G), is defined as

L(G) = {w ∈ T ∗ | (S, r)⇒∗ (w , s), for some r , s ∈ Ψ}.

P . . . the family of languages generated by programmed
grammars

On Nondeterminism in Programmed Grammars 4 / 13



Programmed Grammars – Definition

Definition

The relation of a direct derivation, symbolically denoted by⇒,
is defined over (N ∪ T )∗ ×Ψ as follows:

(u, r)⇒ (v , s)

if and only if

u = u1Au2, v = u1xu2, (r : A→ x , σr ) ∈ P, and s ∈ σr .

Definition

The language generated by G, L(G), is defined as

L(G) = {w ∈ T ∗ | (S, r)⇒∗ (w , s), for some r , s ∈ Ψ}.

P . . . the family of languages generated by programmed
grammars

On Nondeterminism in Programmed Grammars 4 / 13



Programmed Grammars – Example

Example

(1 : S → ABC, {2, 5})
(2 : A→ aA, {3})
(3 : B → bB, {4})
(4 : C → cC, {2, 5})
(5 : A→ a, {6})
(6 : B → b, {7})
(7 : C → c, {7})

(S, 1) ⇒ (ABC, 2)
⇒ (aABC, 3)
⇒ (aAbBC, 4)
⇒ (aAbBcC, 5)
⇒ (aabBcC, 6)
⇒ (aabbcC, 7)
⇒ (aabbcc, 7)

1 2 3 4

5 6 75

L(G) = {anbncn | n ≥ 1}

On Nondeterminism in Programmed Grammars 5 / 13



Part I: Degree of Nondeterminism

Definition

Let G = (N, T , S, Ψ, P) be a programmed grammar. G is of
degree of nondeterminism n, where n ≥ 1, if every
(r : A→ x , σr ) ∈ P satisfies

card(σr ) ≤ n.

By dnd(G), we denote the degree of nondeterminism of G.

DND(P,n) . . . the family of languages generated by
programmed grammars of degree of nondeterminism n

On Nondeterminism in Programmed Grammars 6 / 13



Part I: Degree of Nondeterminism

Question

What happens if we limit the degree of nondeterminism?

Theorem

DND(P, 1) = FIN

FIN . . . the family of finite languages

Theorem

DND(P, 2) = P

On Nondeterminism in Programmed Grammars 7 / 13



Part I: Degree of Nondeterminism

Question

What happens if we limit the degree of nondeterminism?

Theorem

DND(P, 1) = FIN

FIN . . . the family of finite languages

Theorem

DND(P, 2) = P

On Nondeterminism in Programmed Grammars 7 / 13



Part I: Degree of Nondeterminism

Question

What happens if we limit the degree of nondeterminism?

Theorem

DND(P, 1) = FIN

FIN . . . the family of finite languages

Theorem

DND(P, 2) = P

On Nondeterminism in Programmed Grammars 7 / 13



Part II: Number of Nondeterministic Rules

Question

What happens if we limit the number of nondeterministic rules?

nP . . . the family of languages generated by programmed
grammars with n nondeterministic rules

Theorem

1P = P

On Nondeterminism in Programmed Grammars 8 / 13



Part II: Number of Nondeterministic Rules

Question

What happens if we limit the number of nondeterministic rules?

nP . . . the family of languages generated by programmed
grammars with n nondeterministic rules

Theorem

1P = P

On Nondeterminism in Programmed Grammars 8 / 13



Part II: Number of Nondeterministic Rules

Question

What happens if we limit the number of nondeterministic rules?

nP . . . the family of languages generated by programmed
grammars with n nondeterministic rules

Theorem

1P = P

On Nondeterminism in Programmed Grammars 8 / 13



Part III: Overall Nondeterminism

Definition

Let G = (N, T , S, Ψ, P) be a programmed grammar. For each
(r : A→ x , σr ) ∈ P, let ζ(r) be defined as

ζ(r) =

{
card(σr ) if card(σr ) ≥ 2
0 otherwise.

The overall nondeterminism of G is denoted by ond(G) and
defined as

ond(G) =
∑
r∈Ψ

ζ(r).

OND(P,n) . . . the family of languages generated by
programmed grammars with overall nondeterminism n

On Nondeterminism in Programmed Grammars 9 / 13



Part III: Overall Nondeterminism – Example

Example

(1 : S → ABC, {2, 5})
(2 : A→ aA, {3})
(3 : B → bB, {4})
(4 : C → cC, {2, 5})
(5 : A→ a, {6})
(6 : B → b, {7})
(7 : C → c, {7})

1 2 3 4

5 6 75

ond(G)

ond(G) = 4

On Nondeterminism in Programmed Grammars 10 / 13



Part III: Overall Nondeterminism

Question

What happens if we limit the overall nondeterminism?

Theorem

OND(P,n) ⊂ OND(P,n + 1)

On Nondeterminism in Programmed Grammars 11 / 13



Part III: Overall Nondeterminism

Question

What happens if we limit the overall nondeterminism?

Theorem

OND(P,n) ⊂ OND(P,n + 1)

On Nondeterminism in Programmed Grammars 11 / 13



Concluding Remarks and Open Problems

Open Problems

• Appearance checking?
• Propagating programmed grammars?

On Nondeterminism in Programmed Grammars 12 / 13



References

M. Barbaiani, C. Bibire, J. Dassow, A. Delaney, S. Fazekas, M. Ionescu, G. Liu, A. Lodhi,
and B. Nagy.
The power of programmed grammars with graphs from various classes.
Journal of Applied Mathematics & Computing, 22(1–2):21–38, 2006.

H. Bordihn and M. Holzer.
Programmed grammars and their relation to the LBA problem.
Acta Informatica, 43(4):223–242, 2006.

J. Dassow and G. Păun.
Regulated Rewriting in Formal Language Theory.
Springer, New York, 1989.

D. J. Rosenkrantz.
Programmed grammars and classes of formal languages.
Journal of the ACM, 16(1):107–131, 1969.

On Nondeterminism in Programmed Grammars 13 / 13



The thank you slide.


	Preliminaries and Introduction
	Part I: Degree of Nondeterminism
	Part II: Number of Nondeterministic Rules
	Part III: Overall Nondeterminism
	Concluding Remarks and Open Problems

