
On Nondeterminism in Programmed
Grammars

Alexander Meduna, Lukáš Vrábel, and Petr Zemek
Brno University of Technology, Faculty of Information Technology

Božetěchova 1/2, 612 00 Brno, Czech Republic
http://www.fit.vutbr.cz/∼{meduna, ivrabel, izemek}

13th International Conference on Automata and Formal Languages, 2011



Programmed Grammars

Example

(1 : S → ABC, {2, 5})
(2 : A→ aA, {3})
(3 : B → bB, {4})
(4 : C → cC, {2, 5})
(5 : A→ a, {6})
(6 : B → b, {7})
(7 : C → c, ∅)

(S, 1) ⇒ (ABC, 2)
⇒ (aABC, 3)
⇒ (aAbBC, 4)
⇒ (aAbBcC, 5)
⇒ (aabBcC, 6)
⇒ (aabbcC, 7)
⇒ (aabbcc,⊥)

1

2 3 4

5 6 7

L(G) =
{

anbncn | n ≥ 1
}

On Nondeterminism in Programmed Grammars 2 / 12



Nondeterminism in Programmed Grammars

Three types of nondeterminism:
1 Which rule should be chosen as the first one?
2 Which occurrence of a nonterminal should be rewritten?
3 Which successor should be chosen?

What has been studied:
• at most one successor [Bordihn, Holzer 2006]

• at most two successors [Bordihn, Holzer 2006]

• graphs from various classes [BBDDFILLN, 2006]

On Nondeterminism in Programmed Grammars 3 / 12



Nondeterminism in Programmed Grammars

Three types of nondeterminism:
1 Which rule should be chosen as the first one?
2 Which occurrence of a nonterminal should be rewritten?
3 Which successor should be chosen?

What has been studied:
• at most one successor [Bordihn, Holzer 2006]

• at most two successors [Bordihn, Holzer 2006]

• graphs from various classes [BBDDFILLN, 2006]

On Nondeterminism in Programmed Grammars 3 / 12



Nondeterminism in Programmed Grammars

Central topic of our paper:
• continue the study of the role of nondeterminism in

programmed grammars

Motivation:
• theoretical: normal forms
• practical: parsing

On Nondeterminism in Programmed Grammars 4 / 12



Results: Number of Nondeterministic Rules

Definition

Nondeterministic rule: a rule with more than one successor.

Example

Nondeterministic rule: (1 : S → ABC, {2, 5})
Deterministic rule: (2 : A→ aA, {3})

On Nondeterminism in Programmed Grammars 5 / 12



Results: Number of Nondeterministic Rules

Definition

Nondeterministic rule: a rule with more than one successor.

Result

Every programmed grammar can be transformed into an
equivalent programmed grammar with only a single
nondeterministic rule.

1

2 3 4

5 6 7

X

2 3 4

5 6 71

On Nondeterminism in Programmed Grammars 6 / 12



Results: Number of Nondeterministic Rules

Definition

Nondeterministic rule: a rule with more than one successor.

Proof Idea

For the original rule (1 : S → ABC, {2, 5}), we introduce the
following rules:

• (1 : S → 〈1〉$, {X})
• (X : $→ ε, {. . . , r , s, . . . })
• (r : 〈1〉 → ABC, {2})
• (s : 〈1〉 → ABC, {5})

On Nondeterminism in Programmed Grammars 7 / 12



Results: Number of Nondeterministic Rules

Definition

Nondeterministic rule: a rule with more than one successor.

Proof Idea

For the original rule (1 : S → ABC, {2, 5}), we introduce the
following rules:

• (1 : S → 〈1〉$, {X})

• (X : $→ ε, {. . . , r , s, . . . })
• (r : 〈1〉 → ABC, {2})
• (s : 〈1〉 → ABC, {5})

On Nondeterminism in Programmed Grammars 7 / 12



Results: Number of Nondeterministic Rules

Definition

Nondeterministic rule: a rule with more than one successor.

Proof Idea

For the original rule (1 : S → ABC, {2, 5}), we introduce the
following rules:

• (1 : S → 〈1〉$, {X})
• (X : $→ ε, {. . . , r , s, . . . })

• (r : 〈1〉 → ABC, {2})
• (s : 〈1〉 → ABC, {5})

On Nondeterminism in Programmed Grammars 7 / 12



Results: Number of Nondeterministic Rules

Definition

Nondeterministic rule: a rule with more than one successor.

Proof Idea

For the original rule (1 : S → ABC, {2, 5}), we introduce the
following rules:

• (1 : S → 〈1〉$, {X})
• (X : $→ ε, {. . . , r , s, . . . })
• (r : 〈1〉 → ABC, {2})

• (s : 〈1〉 → ABC, {5})

On Nondeterminism in Programmed Grammars 7 / 12



Results: Number of Nondeterministic Rules

Definition

Nondeterministic rule: a rule with more than one successor.

Proof Idea

For the original rule (1 : S → ABC, {2, 5}), we introduce the
following rules:

• (1 : S → 〈1〉$, {X})
• (X : $→ ε, {. . . , r , s, . . . })
• (r : 〈1〉 → ABC, {2})
• (s : 〈1〉 → ABC, {5})

On Nondeterminism in Programmed Grammars 7 / 12



Results: Overall Nondeterminism

1

2

3
4

5

6 7

VS
1

2

3
4

5

6

7
8

• The first grammar is harder to analyze/parse.
• Nondeterministic rules increase complexity.
• No problem with deterministic rules.

Formalization

Overall nondeterminism: the sum of the number of successors
of each nondeterministic rule.

On Nondeterminism in Programmed Grammars 8 / 12



Results: Overall Nondeterminism

1

2

3
4

5

6 7

VS
1

2

3
4

5

6

7
8

• The first grammar is harder to analyze/parse.
• Nondeterministic rules increase complexity.
• No problem with deterministic rules.

Formalization

Overall nondeterminism: the sum of the number of successors
of each nondeterministic rule.

On Nondeterminism in Programmed Grammars 8 / 12



Example

Consider
{

anbncn | n ≥ 1
}

.

(1 : S → ABC, {2, 5})
(2 : A→ aA, {3})
(3 : B → bB, {4})
(4 : C → cC, {2, 5})
(5 : A→ a, {6})
(6 : B → b, {7})
(7 : C → c, ∅)

1

2 3 4

5 6 7

(1 : S → ABC, {2})
(2 : A→ aA, {3})
(3 : B → bB, {4})
(4 : C → cC, {2, 5})
(5 : A→ ε, {6})
(6 : B → ε, {7})
(7 : C → ε, ∅)

1

2

3
4

5

6

7

Overall nondeterminism: 4 Overall nondeterminism: 2

On Nondeterminism in Programmed Grammars 9 / 12



Results: Overall Nondeterminism

Result

We cannot limit overall nondeterminism without losing
generality.

Consider the alphabet Σ = {a1,a2, . . . ,an}. Define

Ln =
n⋃

i=1

{ai}+

Ln has overall nondeterminism n + 1.

On Nondeterminism in Programmed Grammars 10 / 12



Results: Overall Nondeterminism

Result

We cannot limit overall nondeterminism without losing
generality.

Consider the alphabet Σ = {a1,a2, . . . ,an}. Define

Ln =
n⋃

i=1

{ai}+

Ln has overall nondeterminism n + 1.

On Nondeterminism in Programmed Grammars 10 / 12



Open Problems

• Proof of the second result without a growing alphabet?
• Programmed grammars with appearance checking?
• Programmed grammars without ε-rules?
• Programmed grammars with leftmost derivations?

On Nondeterminism in Programmed Grammars 11 / 12



References

M. Barbaiani, C. Bibire, J. Dassow, A. Delaney, S. Fazekas, M. Ionescu, G. Liu, A. Lodhi,
and B. Nagy.
The power of programmed grammars with graphs from various classes.
Journal of Applied Mathematics & Computing, 22(1–2):21–38, 2006.

H. Bordihn and M. Holzer.
Programmed grammars and their relation to the LBA problem.
Acta Informatica, 43(4):223–242, 2006.

J. Dassow and G. Păun.
Regulated Rewriting in Formal Language Theory.
Springer, New York, 1989.

A. Meduna, L. Vrábel, and P. Zemek.
On nondeterminism in programmed grammars.
In 13th International Conference on Automata and Formal Languages, pages
316–328, Debrecen, HU, 2011. Computer and Automation Research Institute,
Hungarian Academy of Sciences.

D. J. Rosenkrantz.
Programmed grammars and classes of formal languages.
Journal of the ACM, 16(1):107–131, 1969.

On Nondeterminism in Programmed Grammars 12 / 12



Discussion


	Programmed Grammars
	Nondeterminism in Programmed Grammars
	Results
	Open Problems
	References

