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Programmed Grammars

Example

(1 : S → ABC, {2, 5})
(2 : A→ aA, {3})
(3 : B → bB, {4})
(4 : C → cC, {2, 5})
(5 : A→ a, {6})
(6 : B → b, {7})
(7 : C → c, ∅)

(S, 1) ⇒ (ABC, 2)
⇒ (aABC, 3)
⇒ (aAbBC, 4)
⇒ (aAbBcC, 5)
⇒ (aabBcC, 6)
⇒ (aabbcC, 7)
⇒ (aabbcc,⊥)
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L(G) =
{

anbncn | n ≥ 1
}
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Nondeterminism in Programmed Grammars

Three types of nondeterminism:
1 Which rule should be chosen as the first one?
2 Which occurrence of a nonterminal should be rewritten?
3 Which successor should be chosen?

What has been studied:
• at most one successor [Bordihn, Holzer 2006]

• at most two successors [Bordihn, Holzer 2006]

• graphs from various classes [BBDDFILLN, 2006]
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Nondeterminism in Programmed Grammars

Central topic of our paper:
• continue the study of the role of nondeterminism in

programmed grammars

Motivation:
• theoretical: normal forms
• practical: parsing
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Results: Number of Nondeterministic Rules

Definition

Nondeterministic rule: a rule with more than one successor.

Example

Nondeterministic rule: (1 : S → ABC, {2, 5})
Deterministic rule: (2 : A→ aA, {3})
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Results: Number of Nondeterministic Rules

Definition

Nondeterministic rule: a rule with more than one successor.

Result

Every programmed grammar can be transformed into an
equivalent programmed grammar with only a single
nondeterministic rule.

1

2 3 4

5 6 7

X

2 3 4

5 6 71
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Results: Number of Nondeterministic Rules

Definition

Nondeterministic rule: a rule with more than one successor.

Proof Idea

For the original rule (1 : S → ABC, {2, 5}), we introduce the
following rules:

• (1 : S → 〈1〉$, {X})
• (X : $→ ε, {. . . , r , s, . . . })
• (r : 〈1〉 → ABC, {2})
• (s : 〈1〉 → ABC, {5})
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Results: Overall Nondeterminism

1

2

3
4

5

6 7

VS
1

2

3
4

5

6

7
8

• The first grammar is harder to analyze/parse.
• Nondeterministic rules increase complexity.
• No problem with deterministic rules.

Formalization

Overall nondeterminism: the sum of the number of successors
of each nondeterministic rule.
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Example

Consider
{

anbncn | n ≥ 1
}

.

(1 : S → ABC, {2, 5})
(2 : A→ aA, {3})
(3 : B → bB, {4})
(4 : C → cC, {2, 5})
(5 : A→ a, {6})
(6 : B → b, {7})
(7 : C → c, ∅)

1

2 3 4

5 6 7

(1 : S → ABC, {2})
(2 : A→ aA, {3})
(3 : B → bB, {4})
(4 : C → cC, {2, 5})
(5 : A→ ε, {6})
(6 : B → ε, {7})
(7 : C → ε, ∅)

1
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Overall nondeterminism: 4 Overall nondeterminism: 2
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Results: Overall Nondeterminism

Result

We cannot limit overall nondeterminism without losing
generality.

Consider the alphabet Σ = {a1,a2, . . . ,an}. Define

Ln =
n⋃

i=1

{ai}+

Ln has overall nondeterminism n + 1.
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Open Problems

• Proof of the second result without a growing alphabet?
• Programmed grammars with appearance checking?
• Programmed grammars without ε-rules?
• Programmed grammars with leftmost derivations?
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Discussion
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