An Infinite Hierarchy of Language Families Resulting from *n*-limited Programmed Grammars

Petr Zemek

EEICT, 24.4.2008

Brno University of Technology Faculty of Information Technology

Supervisor: Prof. RNDr. Alexander Meduna, CSc.

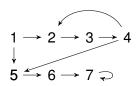
Programmed Grammar

A programmed grammar is a quadruple

$$G=(N,T,S,P),$$

where

- N is an alphabet of nonterminals;
- T is an alphabet of terminals;
- S is the starting nonterminal;
- P is a finite set of productions of the form $(r : A \rightarrow v, \sigma(r))$.



An Infinite Hierarchy of Language Families

Example

$$\begin{array}{l} (1:S \to ABC, \{2,5\}) \\ (2:A \to aA, \{3\}) \\ (3:B \to bB, \{4\}) \\ (4:C \to cC, \{2,5\}) \\ (5:A \to a, \{6\}) \\ (6:B \to b, \{7\}) \\ (7:C \to c, \{7\}) \end{array}$$

Example

$$\begin{array}{l} (1:S \to ABC, \{2,5\}) \\ (2:A \to aA, \{3\}) \\ (3:B \to bB, \{4\}) \\ (4:C \to cC, \{2,5\}) \\ (5:A \to a, \{6\}) \\ (6:B \to b, \{7\}) \\ (7:C \to c, \{7\}) \end{array}$$

$$\begin{array}{c}
1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \\
\downarrow \\
5 \rightarrow 6 \rightarrow 7 \Rightarrow
\end{array}$$

$$S \Rightarrow ABC [1]$$

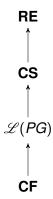
$$\Rightarrow aABC [2]$$

$$\Rightarrow aAbBC [3]$$

$$\Rightarrow aAbBcC [4]$$

$$\Rightarrow aabBcC [5]$$

$$\Rightarrow aabbcC [6]$$


$$\Rightarrow aabbcc [7]$$

$$L(G) = \{a^nb^nc^n \colon n \ge 1\}$$

Generative Power

Leftmost Derivations

Idea: At each step of a derivation the leftmost occurence of a nonterminal has to be rewritten

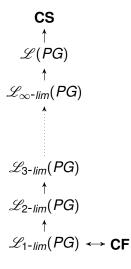
Example:
$$(r : A \rightarrow v, \sigma(r))$$

 $wA_1xA_2yA_3z \Rightarrow wvxA_2yA_3z [r]$ (only!)

Problem: We decrease the generative power of programmed grammars to **CF**.

An Infinite Hierarchy of Language Families

n-limited Derivations


Idea: At each step of a derivation at most the *n*th occurrence (from the left) of a nonterminal has to be rewritten, where $n \ge 1$.

Example:
$$(r: A \rightarrow v, \sigma(r))$$

 $x_0 A_1 x_1 A_2 x_2 \dots A_n x_n \dots A_{n+1} x_{n+1} \dots A_h x_h \Rightarrow$
 $x_0 v x_1 A_2 x_2 \dots A_n x_n \dots A_{n+1} x_{n+1} \dots A_h x_h [r] \text{ or }$
 $x_0 A_1 x_1 v x_2 \dots A_n x_n \dots A_{n+1} x_{n+1} \dots A_h x_h [r] \text{ or }$
 \vdots
 $x_0 A_1 x_1 A_2 x_2 \dots v x_n \dots A_{n+1} x_{n+1} \dots A_h x_h [r].$

Question: How does this affect the generative power?

Infinite Hierarchy of Language Families

End of presentation, thank you for your attention!

Any questions?

