Regular Controlled CFG *k*-Limited Erasing Results and Proofs

k-Limited Erasing Performed by Regular-Controlled Context-Free Grammars

Petr Zemek

(Alexander Meduna)

Brno University of Technology Faculty of Information Technology

2010-03-10

Regular Controlled CFG *k*-Limited Erasing Results and Proofs Definition Example Generative Power

Regular-Controlled CFG

A regular-controlled context-free grammar is a pair, H = (G, R), where

- G = (V, T, S, P) is a context-free grammar and
- $R \subseteq P^*$ is a regular language (*control language*).

$$L(H) = \{ w \in T^* \mid S \Rightarrow^* w \ [\alpha] \text{ with } \alpha \in R \}$$

	Regular Controlled CFG <i>k</i> -Limited Erasing Results and Proofs	Definition Example Generative Power
Example		

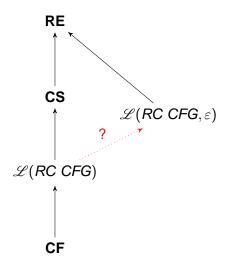
Let H = (G, R) be a regular-controlled context-free grammar, where *P* contains the following rules

1: $S \rightarrow ABC$,	5 : $A \rightarrow \varepsilon$,
$\textbf{2}: \textbf{A} \rightarrow \textbf{aA},$	6 : $\boldsymbol{B} \rightarrow \boldsymbol{\varepsilon}$,
$3: B \rightarrow bB,$	7 : $\mathbf{C} \rightarrow \varepsilon$,
$\textbf{4}\colon \boldsymbol{C}\to \boldsymbol{c}\boldsymbol{C},$,

and $R = \{1\}\{234\}^*\{567\}$.

	Regular Controlled CFG <i>k</i> -Limited Erasing Results and Proofs	Definition Example Generative Power

Generative Power



Regular Controlled CFG *k*-Limited Erasing Results and Proofs ldea Examples Definition

k-Limited Erasing (Idea)

Regular-controlled context-free grammar *H* erases its nonterminals in a *k*-limited way provided that in all $S \Rightarrow^* x \Rightarrow^* y$, where $y \in L(H) - \{\varepsilon\}$,

for every symbol in *x*, which is not erased, *x* contains at most *k* nonterminals which are erased.

	Regular Controlled CFG <i>k</i> -Limited Erasing Results and Proofs	Idea Examples Definition	
Example 1			

Let H = (G, R) be a regular-controlled context-free grammar, where *P* contains the following rules

1: $S \rightarrow ABC$,	5: $A \rightarrow \varepsilon$,
$2: A \rightarrow aA$,	6 : $\boldsymbol{B} \rightarrow \varepsilon$,
3 : $B \rightarrow bB$,	7 : $\mathbf{C} \rightarrow \varepsilon$,
$A: C \rightarrow cC$	

and $R = \{1\}\{234\}^*\{567\}$.

	Regular Controlled CFG <i>k</i> -Limited Erasing Results and Proofs	ldea Examples Definition
Example 2		

Let H = (G, R) be a regular-controlled context-free grammar, where *P* contains the following rules

1:
$$S \rightarrow SS$$
,
2: $S \rightarrow a$,
3: $S \rightarrow \varepsilon$,

and $R = \{1\}^* \{2\}^* \{3\}^*$.

 Regular Controlled CFG
 Id

 k-Limited Erasing
 E

 Results and Proofs
 E

Idea Examples Definition

k-Limited Erasing (Definition)

Regular-controlled context-free grammar *H* erases its nonterminals in a *k*-limited way provided that it satisfies this implication:

if S ⇒^{*} y is a derivation of the form S ⇒^{*} x ⇒^{*} y, where x ∈ V⁺ and y ∈ L(H) − {ε}, then in Δ(S ⇒^{*} y), the |x| subtrees rooted at all the symbols of x contain |x|/(k + 1) or more +-subtrees.

	Regular Controlled CFG <i>k</i> -Limited Erasing Results and Proofs	Main Result Algorithm Proof of Correctness
Main Result		

Theorem. For every regular controlled context-free grammar *I* that erases its nonterminals in a *k*-limited way, there is a regular controlled context-free grammar *M* without ε -rules such that $L(M) = L(I) - \{\varepsilon\}$.

Algorithm – Input and Output

Input: A context-free grammar, $G = (V_G, T_G, S_G, P_G)$, and a regular grammar, $H = (V_H, T_H, S_H, P_H)$, such that regular controlled context-free grammar I = (G, L(H)) erases its nonterminals in a *k*-limited way.

Output: A context-free grammar without ε -rules, $O = (V_O, T_O, P_O, S_O)$, and a regular grammar, $Q = (V_Q, T_Q, P_Q, S_Q)$, such that $L(M) = L(I) - \{\varepsilon\}$ for a regular controlled context-free grammar M = (O, L(Q)).

 Regular Controlled CFG
 Main Result

 k-Limited Erasing
 Algorithm

 Results and Proofs
 Proof of Correctne

Algorithm – Method 1/4

Method: Initially, set:

$$\begin{split} &k' = k + max(\{|rhs(r)| \mid r \in P_G\});\\ &T_O = T_G;\\ &V_O = T_O \cup \{\langle X, y \rangle \mid X \in V_G, y \in N_G^*, 0 \leq |y| \leq k'\};\\ &S_O = \langle S_G, \varepsilon \rangle;\\ &P_O = \{\langle a, \varepsilon \rangle \to a \mid a \in T_G\};\\ &T_Q = P_O;\\ &V_Q = T_Q \cup N_H \cup \{Z\};\\ &S_Q = S_H;\\ &P_Q = \{Z \to \lfloor \langle a, \varepsilon \rangle \to a \rfloor Z \mid a \in T_G\} \cup\\ &\quad \{Z \to \lfloor \langle a, \varepsilon \rangle \to a \rfloor \mid a \in T_G\}. \end{split}$$

Algorithm – Method 2/4

Method: Repeat (1) through (3), given next, until none of the sets P_O, P_Q can be extended in this way.

(1)
If
$$r: A \to x_0 X_1 x_1 X_2 x_2 \dots X_n x_n \in P_G$$
 and
 $\langle A, w \rangle, \langle X_1, w x_0 x_1 \dots x_n \rangle \in N_O$, where $X_i \in V_G$, for all
 $1 \le i \le n, x_i \in N_G^*$, for all $0 \le j \le n, w \in N_G^*$, for some $n \ge 1$

Then add
$$s: \langle A, w \rangle \rightarrow \langle X_1, wx_0x_1 \dots x_n \rangle \langle X_2, \varepsilon \rangle \dots \langle X_n, \varepsilon \rangle$$
 to P_0 ;
for each $B \rightarrow r \in P_H$, add $B \rightarrow sZ$ to P_Q ;
for each $B \rightarrow rC \in P_H$, $C \in N_H$, add $B \rightarrow sC$ to P_Q

Method: Repeat (1) through (3), given next, until none of the sets P_{O} , P_{Q} can be extended in this way.

(2)
If
$$r: A \to w \in P_G$$
 and $\langle X, uAv \rangle, \langle X, uwv \rangle \in N_0$, where
 $X \in V_G$, $u, v, w \in N_G^*$

Then add
$$s: \langle X, uAv \rangle \rightarrow \langle X, uwv \rangle$$
 to P_0 ;
for each $B \rightarrow r \in P_H$, add $B \rightarrow sZ$ to P_Q ;
for each $B \rightarrow rC \in P_H$, $C \in N_H$, add $B \rightarrow sC$ to P_Q .

Method: Repeat (1) through (3), given next, until none of the sets P_0, P_Q can be extended in this way.

(3)
If
$$\langle X, uAv \rangle$$
, $\langle Y, w \rangle$, $\langle Y, wA \rangle \in N_0$, where $X, Y \in V_G$, $A \in N_G$,
 $u, v, w \in N_G^*$

Then add $r: \langle X, uAv \rangle \rightarrow \langle X, uv \rangle$ and $s: \langle Y, w \rangle \rightarrow \langle Y, wA \rangle$ to P_0 ; for each $B \in N_H$, add a new (unique) nonterminal C to N_Q and add $B \rightarrow rC$ and $C \rightarrow sB$ to P_Q .

 Regular Controlled CFG
 Main Result

 k-Limited Erasing
 Algorithm

 Results and Proofs
 Proof of Correctness

Proof of Correctness (Idea)

Claim.

$$\begin{split} \mathsf{S}_{\mathsf{G}} \Rightarrow^{m} {}^{\varepsilon} x_0 X_1 {}^{\varepsilon} x_1 X_2 {}^{\varepsilon} x_2 \dots X_h {}^{\varepsilon} x_h \left[\alpha\right] \text{ in } \mathsf{G} \\ \text{ if and only if} \\ \langle \mathsf{S}_{\mathsf{G}}, \varepsilon \rangle \Rightarrow^n \langle X_1, u_1 \rangle \langle X_2, u_2 \rangle \dots \langle X_h, u_h \rangle \left[\gamma\right] \text{ in } \mathsf{O}, \end{split}$$

where $X_i \in V_G$, for all $1 \le i \le h$, $\varepsilon x_j \in N_G^*$, for all $0 \le j \le h$, $u_1 u_2 \ldots u_h \in perm(\varepsilon x_0 \varepsilon x_1 \ldots \varepsilon x_h)$, $\alpha \in P_G^+$, $\gamma \in P_O^+$, and $h, m, n \ge 1$.

References

- A. Meduna and P. Zemek
 On Regular-Controlled Context-Free Grammars that Erase
 Nonterminals in a k-Limited Way.
 In: Fundamenta Informaticae (to appear).
- G. Rozenberg and A. Salomaa, editors Handbook of Formal Languages, Vol. 2: Linear Modeling: Background and Application. Springer, 1997. ISBN 3540614869
- C. Martín-Vide and G. Păun and V. Mitrana, editors Formal Languages and Applications. Springer, 2004. ISBN 3-540-20907-7.

