Flying with Python

Petr Zemek

Brno University of Technology, Faculty of Information Technology
Bozetéchova 2, 612 00 Brno, CZ
http://www.fit.vutbr.cz/~izemek

Principles of Programming Languages, 2011-03-07

| fll

| Motto

“Python makes you fly.”

Ao

;\%\

g

4

7z

URE FLYING!

Yo

77

\\m \\\ A
P 4

http://xkcd.com/353/

2/25

Flying with Python

http://xkcd.com/353/

| Out“ne il

® Introduction

e Language Essentials

e Some Cool Language Features
e Examples

e Concluding Remarks

Acknowledgements

This presentation is partially based on the following presentations:
* A Gentle Introduction to Python, M. J. Fromberger
* Introduction to Python, G. Griffin
* Python Programming — Introduction to Python, F. A. Nielsen
* Introduction to Python, H. Boley

Flying with Python |~ 3/25

| What is Python? | m
@ python

* interpreted, general-purpose high-level programming language
+ design philosophy emphasizes code readability

+ multiparadigm (procedural, object-oriented, functional)

+ (almost) everything is an object

+ dynamically typed (duck typing)

+ portable (CPython, Jython, IronPython)

* highly extensible

+ automatic memory management (garbage collector)

* free (as in “free speech”)

Flying with Python |~ 4/25

| A Glimpse at Python History il

- invented in the beginning of 1990s by Guido van Rossum

P

+ the name Python stems from “Monty Python’s Flying Circus”
+ intended to be a scripting language on Amoeba OS
- influenced by several languages, like ABC, Lisp, and Modula-3

* current versions:

+ Python 2.7 (November 2010)
+ Python 3.2 (February 2011)

Flying with Python | 5/25

| Python’s Design i

+ clean, minimal syntax: “executable pseudocode”

+ implemented in C and is generally C-like

 uses indentation to delimit blocks

* supports both procedural and object-oriented programming
+ uses a small set of powerful built-in data types

* supports generic programming via dynamic binding rather than
templating

def foo(x):
if x ==
bar (
baz (
else:
qux (x)
foo(x - 1)

)
)

Flying with Python | 6/25

| Built-In Primitive Data Types

* bool

il

True, False

* integer

-590, 0, 17821223734857348538746273464545

floating-point

0.125, 1e200, inf

+ complex

3+ 47

* string

'single quotes'
"double quotes"
"""triple quotes for
multiline strings"""

Flying with Python

7/25

| Built-In Collection Types i

* list

[1, 2, 'a dog', 4.5]

* tuple

('id', False)

* set

{0, [1, (), True}

« dictionary

{'key 1': 'value 1', 2: 3, 4: []}

Flying with Python | 8/25

| Variables i

Just like in other programming languages, however:
+ variables do not have to be declared
+ keeps references to objects

a=[3, 1, 2]

b = a

b.sort ()

print(a) # [1, 2, 3]

Flying with Python | 9/25

| Operators T

arithmetic +, —, =, /, //, %, **
comparison <, >, ==, l=, <=, >=
bitwise <<, >>, |, &, ~, ~
logical and, or, not
assignment =, —=, +=, x=, /=
other in, is

~
S~
Il
o
A
*
*
Il

Flying with Python |~ 10/25

| Functions il

def add(a, b):
"""This function returns a + b."""
return a + b

a = add (1, 2)

- first-class objects
+ default arguments
+ variable length argument lists

Flying with Python |~ 11/25

| Flow Control (l)

if conditional execution of a code block

il

if x > 10:

x = 10
elif x < 5:

x = foo(x)
else:

print ('error')

for traversing items in a collection

for i in [1, 2, 3, 4, 5]:
print (i)

while repeated execution of a code block based on a boolean

condition

while x > 0:
print (x)
x =x - 1

Flying with Python

12/25

| Flow Control (II) i

try/catch/finally exception handling

f = None
try:
f = open('aFileName')
f.write (data)
except IOError:
print ('Unable to open/write file')
except: # catch all exceptions
print ('Unexpected error')
else: # 1f no exceptions are raised
print ('File write completed successfully')
finally: # clean-up actions, always executed
if f:
f.close()

Flying with Python |~ 13/25

| Classes il

class myint (int): # Inheritance from int
def __init__ (self, integer):
"""Constructor."""
self.integer = integer

def __add__ (self, integer):
"""Overloaded '+' operator."""
if self.integer == 2 and integer ==
return 5
else:
return self.integer + integer

a = myint (2)
print (a+2) # 5
print (2+a) # 4

* multiple inheritance
* no private methods, everything is public

Flying with Python | 14/25

| Packages, Modules and Imports f

Import a single module
import dnd

Import more modules
import os, sys, re

Import just one name from the email module
from email import message_from_file

Import and rename
from urllib2 import urlopen as uop

Import everything from the given module
from utils import =

+ packages (for structuring modules)

Flying with Python |~ 15/25

| Some Cool Language Features (I) i

+ string formatting

'{0}.) {1}'.format (5, 'John') # 5.) John

Flying with Python | 16/25

| Some Cool Language Features (I) i

+ string formatting

'{0}.) {1}'.format (5, 'John') # 5.) John

+ anonymous (lambda) functions

sortedList = sort(list, lambda x, y: x <= vYy)

Flying with Python | 16/25

| Some Cool Language Features (I) i

+ string formatting

'{0}.) {1}'.format (5, 'John') # 5.) John

+ anonymous (lambda) functions

sortedList = sort(list, lambda x, y: x <= vYy)

list comprehensions

[x+%x2 for x in range(10)] # [0, 1, 4, 9, 16, ..., 81]

Flying with Python | 16/25

| Some Cool Language Features (I) i

+ string formatting

'{0}.) {1}'.format (5, 'John') # 5.) John

+ anonymous (lambda) functions

sortedList = sort(list, lambda x, y: x <= vYy)

* list comprehensions

[x+%x2 for x in range(10)] # [0, 1, 4, 9, 16, ..., 81]

« list indexing and slicing

a = [lr 2/ 31 4/ 5]

print(a[-1]) # 5
print(all:41) # [2, 3, 4]
print (al2:]) # [3, 4, 5]
print(al:31) # [1, 2, 3]
print (af0:4:2]1) # [1, 3]

Flying with Python | 16/25

| Some Cool Language Features (Il) i

+ conditional expressions

a =1 1if x else 2

Flying with Python |~ 17/25

| Some Cool Language Features (Il) i

+ conditional expressions

a =1 1if x else 2

* eval () and exec ()

a=eval('l + 3") # a = 4
exec('b = [1, 2, 31") # b = [1, 2, 3]

Flying with Python |~ 17/25

| Some Cool Language Features (Il) i

+ conditional expressions

a =1 if x else 2

* eval () and exec ()

a=eval('l + 3") # a
)

=4
exec('b = [1, 2, 3]') #b = [1, 2, 3]

+ duck typing

def iterate(col):
for i in col:
print (i)

iterate([1, 2, 31)
iterate(('a', 'b', 'c'))

Flying with Python |~ 17/25

| Some Cool Language Features (lll) i

+ various syntactical tidbits

if 1 < a < 5:

o

Flying with Python |~ 18/25

| Some Cool Language Features (lll)

+ various syntactical tidbits

il

if 1 < a < 5:
#

° generators

def permute(lst):
"""A really simple permutation generator."""
if len(lst) < 2:
vield 1st[:]
else:
for p in permute(lst([l:]):
for x in range(len(p) + 1):
vield p[:x] + [1lst[0]] + plx:]
Prints all permutations of [1, 2, 3]
for perm in permute([1l, 2, 3]):
print (x)

Flying with Python

18/25

| Example 1: File Processing i

The following code counts the number of lines in the given file.

f = open('file.txt')

k =0
for line in f:
k =k +1

print (k)

Flying with Python |~ 19/25

| Example 1: File Processing i

The following code counts the number of lines in the given file.

f = open('file.txt')

k =0

for line in f:
k =k +1

print (k)

Another solution (on one line).

print (len([line for line in open('file.txt')]))

Flying with Python | 19/25

| Example 2: Downloading a Web Page i

The following code downloads the given web page.

from urllib import urlopen

url = 'http://en.wikipedia.org/wiki/Python'
doc = urlopen(url) .read()
print (doc)

Flying with Python |~ 20/25

| Standard Library i

« string services (string, re, codecs)

- data types (datetime, calendar, queue, array)

+ numeric and math modules (math, random, functools)
+ OS, file, and directory access (os, tempfile, argparse)
+ data persistence (pickle, shelve)

+ data compression (gzip, zipfile, tarfile)

+ cryptographic services (hashlib, hmac)

* Internet data handling and services (urrlib, json, cgi)
* processing tools (html, xml)

+ development tools (pydoc, unittest)

Flying with Python |~ 21/25

| Other Useful Libraries and Projects i

* django (web framework)

* sgqlalchemy (database toolkit)

* pygtk, pyat, wxpython (graphical user interface)
* numpy (scientific computing)

* antlr (language parsing)

* scons (software construction tool)

Flying with Python | 22/25

| Advantages of Python i

+ clean and simple syntax

- easy to parse, and also to learn

+ powerful built-in types

+ elegant and flexible module system
« user-defined types using classes

+ excellent standard library

* reflection

Flying with Python |~ 23/25

| Disadvantages of Python il

* not very fast on computationally intensive operations
+ Global Interpreter Lock (GIL)
+ (7?) lack of variable declarations and type safety
* (?) standardization
+ (?) language processor cares at a syntactic level
?)

+ (?) not that concise (not a lot of fiddly little close-in operators, a
la Perl, C, etc.)

Flying with Python |~ 24/25

| Where to Look for Further Information? i

+ Python Programming Language — Official Website
http://www.python.org/

+ The Python 3 Tutorial
http://docs.python.org/release/3.0.1/tutorial/

* Python Entry on Wikipedia
http://en.wikipedia.org/wiki/Python_
(programming_language)

* Dive into Python 3
http://diveintopython3.org/

* Programming in Python 3 (2nd Edition)
http://www.gtrac.eu/py3book.html

Flying with Python |~ 25/25

http://www.python.org/
http://docs.python.org/release/3.0.1/tutorial/
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Python_(programming_language)
http://diveintopython3.org/
http://www.qtrac.eu/py3book.html

The thank you slide.

	Introduction
	Language Essentials
	Some Cool Language Features
	Examples
	Concluding Remarks

