On the Nonterminal Complexity of Left Random Context EOL Grammars

Petr Zemek

Brno University of Technology, Faculty of Information Technology Božetěchova 2, 612 00 Brno, CZ http://www.fit.vutbr.cz/~izemek

Outline

Nonterminal Complexity

Left Random Context E0L Grammars

Main Result

Nonterminal Complexity

Natural question

Can we bound the number of nonterminals of a grammar?

Nonterminal Complexity

Natural question

Can we bound the number of nonterminals of a grammar?

Context-free grammars:

cannot be bounded

Nonterminal Complexity

Natural question

Can we bound the number of nonterminals of a grammar?

Context-free grammars:

cannot be bounded

Some other grammars:

- Semi-conditional grammars: 7 nonterminals
- Phrase-structure grammars: 4 nonterminals
- Programmed grammars: 3 nonterminals
- Scattered context grammars: 2 nonterminals

Reduction Techniques

(1) Simulation of a phrase-structure grammar in the so-called Geffert normal form

$$G = (N, T, P, S)$$

with
$$N = \{S, A, B, C\}$$
.

Reduction Techniques

 Simulation of a phrase-structure grammar in the so-called Geffert normal form

$$G = (N, T, P, S)$$

with $N = \{S, A, B, C\}$.

(2) Simulation of a Counter machine (a variant of a Turing machine)

Left Random Context EOL Grammars

Idea:

- parallel grammars
- rules of the form $(A \rightarrow x, Permit, Forbid)$
- presence/absence of symbols is checked only to the left of the rewritten symbol

Left Random Context EOL Grammars

Idea:

- parallel grammars
- rules of the form $(A \rightarrow x, Permit, Forbid)$
- presence/absence of symbols is checked only to the left of the rewritten symbol

Example

A can be rewritten to x by

$$(A \rightarrow X, \{B, C\}, \{D\})$$

in

CBefAccD

Left Random Context EOL Grammars

Idea:

- parallel grammars
- rules of the form $(A \rightarrow x, Permit, Forbid)$
- presence/absence of symbols is checked only to the left of the rewritten symbol

Example

A can be rewritten to x by

$$(A \rightarrow X, \{B, C\}, \{D\})$$

in

<u>CBef</u>AccD

Main Result

Theorem

For every recursively enumerable language K, there exists a left random context EOL grammar G such that

- G generates K, and
- G has only 9 nonterminals.

The thank you slide.