Puerto De La Cruz, Tenerife, Spain
December 10-12, 2011

DESIGN OF AN AUTOMATICALLY GENERATED
RETARGETABLE DECOMPILER

Luka$ Durfina, Jakub Kfoustek, Petr Zemek, Dugan Kolaf, Tomas Hruska,

Contents

1. Introduction and Motivation
2. State of the Art

3. Retargetable Decompiler
= Concept

= Front-end
= Middle-end and Back-end

4. Experimental Results

5. Conclusion and Discussion

PART 1

INTRODUCTION AND MOTIVATION

Introduction and Motivation

= Decompilation
= Reverse translation: binary executables => HLL code (C, Java, etc.)
= Harder than compilation (a lot...)

= Motivation
> Reverse engineering (how does it work?)
= Cross-platform porting
= Adding features to 3" party SW
= Recovery of lost source code
= Finding bugs, vulnerabilities, malware, etc.

= Qur focus

PART 2

TATE QF THE ART

State of the Art

= Reverse engineering
= Disassemblers, decompilers, ...

= Single target architecture decompilation
= Open problem for > 40 years (HP equivalent problem)
= Several attempts (dcc, Boomerang, Hex-Rays, REC Decompiler)

= Retargetable decompilation

= Reconfigurable (based on target platform description)
= The PILAR System (1970, never completed)
= No other similar projects

PART 3

RETARGETABLE DECOMPILER

Retargetable Decompiler

Executables

Cpogee | -

Decompiler
Binary
convertor
to COFF

Processor models in ISAC

$

Generator

$

Reconfigurable tools

Semantics extractor

Instr. decoder

HLL code

ﬂ 8/17

Retargetable Decompiler

= Developed within the Lissom project (BUT FIT)
= In cooperation with AVG Technologies

= Exploitation of existing technologies
= Architecture Description Language ISAC (BUT FIT)
= LLVM Compiler System

= Reconfigurable, automatically generated

= |nput
= Platform-dependent binary application
= Platform model in ISAC

= Qutput

Front-end

= Goal: Semantic translation of the input program

m}

Platform-dependent format => internal COFF format => LLVM IR

= Platform dependent

(m}

Generated based on the architecture model (in the ISAC ADL)

= Tasks:

File format conversion (support of ELF, PE, Mach-O, DEX, E32, ...) to COFF
Generic “disassembly” (based on formal models)

Static code detection (signature based detection, FLIRT, types)

Static analysis (code vs. data, control-flow analyses, etc.)

Compiler detection (for MS Windows and GNU/Linux)

]

]

u]

Middle-end and Back-end

» Goal: HLL code reconstruction

= LLVM IR => HLL independent IR => target HLL code

= Uses existing optimizations and transformations + own passes
= Platform independent

o Built on top of LLVM Compiler System

= Tasks:
= Support of different HLLs (Python’, C)

= Recognition of high-level constructs (loops, IF statements, etc.)
= Emission of the target HLL code

© Post-processing

PART 4

EXPERIMENTAL RESULTS

Experimental Results

= Used platform: Sony PlayStation Portable (PSP)
= video game hand-held console
o dual-core processor based on MIPS-4000
= executables are in the PRX format

= Used compiler: psp-gcc
> from PSP SDK (4.3.2)
= with enabled optimizations (-02)

Experimental Results

= QOriginal code:

#include <pspkernel.h> #
#include "sum.h"

/* Initialization */
PSP_MODULE_INFO("template", o, 1,
PSP MAIN THREAD ATTR (0x80004000) ;

1); #

#
int main (void)

{

volatile int a = 3;

int b;

for (b = 1; b < 100; b++)
a = sum(a, b);

return a;

= Decompiled code:

———————— Global Variables —-—-————-—-
orange = 0
banana = 0
lemon = 0
————————— Declarations --—-———————-

int sum(int, int)
Defined Functions
def main() :
orange = 3
result = orange
for i in range (0,
banana = result
lemon = 1 + 1
result = sum(banana

99) :

lemon

PART 5

CONCLUSION

Conclusion and Future Work

= Retargetable decompiler
= Reconfigurable, platform independent
= No other similar solutions
o Exploitation of existing technologies
= ISAC ADL, LLVM Compiler System
= Result
o Proof of concept: decompilation of a MIPS program (Sony PSP)
> Produces highly readable HLL code (Python-like language)

= Future research
-~ Static analysis (ABI detection)

RISCU33I0N

