Transformation of Formal Models

Petr Zemek

Brno University of Technology, Faculty of Information Technology Božetěchova 2, 612 00 Brno, CZ http://www.fit.vutbr.cz/~izemek

State Doctoral Examination, 2012-02-17

Outline

- Motivation
- Goals and Focus
- Types of Transformations
- State of the Art
- Results
- Conclusion

Topic

• Transformation of formal models

Area

• Theoretical computer science, formal language theory

Motivation

• transformations play an important role in theory and practice

Topic

• Transformation of formal models

Area

• Theoretical computer science, formal language theory

Motivation

• transformations play an important role in theory and practice

Examples

- normal forms
 - + simplification of proofs
 - + more efficient construction of parsers
- elimination of erasing rules
 - + simplification of proofs
 - + requirement for some parsing methods

Goals

- develop new transformations of formal models
- introduce new formal models
- \Rightarrow contribution to formal language theory

Goals

- develop new transformations of formal models
- introduce new formal models
- \Rightarrow contribution to formal language theory

Focus Regulated formal models:

- regulated grammars
- regulated L systems
- regulated grammar systems
- regulated automata

- normal forms
 - + simplification of proofs
 - + more efficient construction of parsers
- elimination of erasing rules
 - + simplification of proofs
 - + requirement for some parsing methods

- normal forms
 - + simplification of proofs
 - + more efficient construction of parsers
- elimination of erasing rules
 - + simplification of proofs
 - + requirement for some parsing methods
- reduction (descriptional complexity)
 - + efficiency

- normal forms
 - + simplification of proofs
 - + more efficient construction of parsers
- elimination of erasing rules
 - + simplification of proofs
 - + requirement for some parsing methods
- reduction (descriptional complexity)
 - + efficiency
- conversion between related formal models
 - + establishment of generative power

- normal forms
 - + simplification of proofs
 - + more efficient construction of parsers
- elimination of erasing rules
 - + simplification of proofs
 - + requirement for some parsing methods
- reduction (descriptional complexity)
 - + efficiency
- conversion between related formal models
 - + establishment of generative power
- generation of extended languages
 - + addition of some useful information

State of the Art

• normal forms

- Chomsky and Greibach normal forms
- Kuroda, Penttonnen, and Geffert normal forms
- several normal forms for regulated grammars

State of the Art

- normal forms
 - Chomsky and Greibach normal forms
 - Kuroda, Penttonnen, and Geffert normal forms
 - several normal forms for regulated grammars
- elimination of erasing rules
 - possible in e.g. context-free and permitting grammars, ETOL systems
 - impossible in e.g. scattered context grammars, random context grammars
 - unknown in e.g. matrix, programmed, and forbidding grammars

State of the Art

- normal forms
 - Chomsky and Greibach normal forms
 - Kuroda, Penttonnen, and Geffert normal forms
 - several normal forms for regulated grammars
- elimination of erasing rules
 - possible in e.g. context-free and permitting grammars, ETOL systems
 - impossible in e.g. scattered context grammars, random context grammars
 - unknown in e.g. matrix, programmed, and forbidding grammars
- reduction (descriptional complexity)
 - done in terms of many computationally complete regulated grammars (e.g. 2 nonterminals in scattered context grammars)

- conversion between related formal models
 - equivalence between grammars and automata
 - computational completeness

- conversion between related formal models
 - equivalence between grammars and automata
 - computational completeness
- generation of extended languages
 - extended Szilard languages (matrix grammars, scattered context grammars)

Several results are based on:

A. Meduna and P. Zemek Regulated Grammars and Their Transformations FIT BUT, Brno, CZ, 2010, p. 239

Results (continued)

One-sided random context grammars

A. Meduna and P. Zemek

One-Sided Random Context Grammars

In: Acta Informatica, 2011

A. Meduna and P. Zemek

Nonterminal Complexity of One-Sided Random Context Grammars In: *Acta Informatica*, 2012 (in press)

- A. Meduna and P. Zemek

One-Sided Random Context Grammars with Leftmost Derivations.

In: LNCS Festschrifts Series, 2012 (to appear)

A. Meduna and P. Zemek

On One-Sided Forbidding Grammars and Selective Substitution Grammars In: International Journal of Computer Mathematics, 2012 (in press)

A. Meduna and P. Zemek

Generalized One-Sided Forbidding Grammars

Submitted to: International Journal of Computer Mathematics

Results (continued)

Left random context ETOL systems

A. Meduna and P. Zemek Left Random Context ETOL Grammars Submitted to: Fundamenta Informaticae

A. Meduna and P. Zemek

Nonterminal Complexity of Left Random Context EOL Grammars Unsubmitted manuscript

Controlled pure grammar systems

A. Meduna and P. Zemek

Controlled Pure Grammar Systems

Submitted to: Journal of Universal Computer Science

Results (continued)

Regular-controlled grammars

- Workspace theorems
 - A. Meduna and P. Zemek

Workspace Theorems for Regular-Controlled Grammars In: Theoretical Computer Science, 2011

- Generation of sentences with their parses
 - A. Meduna and P. Zemek

On the generation of sentences with their parses by propagating regular-controlled grammars

Submitted to: Theoretical Computer Science

Programmed grammars

- Normal forms
- Reduction of nondeterminism
 - A. Meduna and L. Vrábel and P. Zemek On Nondeterminism in Programmed Grammars In: 13th International Conference on Automata and Formal Languages, HU, 2011

Unregulated formal models

- Modification of a finite automaton
 - A. Meduna and P. Zemek Jumping Finite Automata Submitted to: International Journal of Foundations of Computer Science
- Alternative elimination of erasing rules from context-free grammars
- A. Meduna and P. Zemek

On Elimination of Erasing Rules from EOS Grammars Unsubmitted manuscript

• New normal form of phrase-structure grammars

Z. Křivka and A. Meduna and P. Zemek A New Normal Form for Phrase-Structure Grammars Unsubmitted manuscript

Parsing and compilation

- Parsing based on LL versions of regulated grammars
- A. Meduna and L. Vrábel and P. Zemek
 LL Leftmost k-Linear Scattered Context Grammars
 In: Symposium on Computer Languages, Impl. and Tools, GR, 2011
 A. Meduna and L. Vrábel and P. Zemek
 - LL Random Context Grammars Unsubmitted manuscript

Molecular genetics

• Information processing in molecular genetics based on one-sided random context grammars

Conclusion

What was presented

- the focus and motivation of my Ph.D. thesis
- state of the art
- a brief summary of the obtained results

Concluding notes

- the core results have been published or submitted
- some further results remain to be investigated (regulated finite automata)

Discussion