Normal Forms of One-Sided Random Context Grammars

Petr Zemek

Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, $61200 \mathrm{Brno}, \mathrm{CZ}$ http://www.fit.vutbr.cz/~izemek

Area

- Theoretical computer science, formal language theory

Topic

- Normal forms of one-sided random context grammars

Area

- Theoretical computer science, formal language theory

Topic

- Normal forms of one-sided random context grammars

What are normal forms?
Motivation?

- theoretical: simplification of proofs
- practical: more efficient construction of parsers

Area

- Theoretical computer science, formal language theory

Topic

- Normal forms of one-sided random context grammars

What are one-sided random context grammars?
Motivation?

- vivid topic in today's formal language theory
- only one existing normal form
- variant of a random context grammar
- $P=P_{L} \cup P_{R}$
- $(A \rightarrow x, U, W) \in P$
- variant of a random context grammar
- $P=P_{L} \cup P_{R}$
- $(A \rightarrow x, U, W) \in P_{L}$

$$
\longleftarrow, ~ A
$$

- variant of a random context grammar
- $P=P_{L} \cup P_{R}$
- $(A \rightarrow x, U, W) \in P_{R}$

$$
A \ldots
$$

- variant of a random context grammar
- $P=P_{L} \cup P_{R}$
- $(A \rightarrow x, U, W) \in P_{R}$

$$
A \cdots
$$

Example

$(A \rightarrow x,\{B, C\},\{D\}) \in P_{L}$
bBcECbAcD

- variant of a random context grammar
- $P=P_{L} \cup P_{R}$
- $(A \rightarrow x, U, W) \in P_{R}$

$$
A \ldots
$$

Example

$(A \rightarrow x,\{B, C\},\{D\}) \in P_{L}$
$\overleftarrow{b B C E C b} \triangle C D$

- variant of a random context grammar
- $P=P_{L} \cup P_{R}$
- $(A \rightarrow x, U, W) \in P_{R}$

$$
A \ldots
$$

Example

$(A \rightarrow x,\{B, C\},\{D\}) \in P_{L}$

$$
\overleftarrow{b B c E C b} \boxed{A} c D \Rightarrow b B c E C b \times c D
$$

Form of all results

For any one-sided random context grammar, there is an equivalent one-sided random context grammar satisfying
< normal form >

Normal Form I
 $P_{L}=P_{R}$

Normal Form I
 $P_{L}=P_{R}$

Normal Form II
$P_{L} \cap P_{R}=\emptyset$

Normal Form I

$P_{L}=P_{R}$

Normal Form II

$P_{L} \cap P_{R}=\emptyset$

Normal Form III
$(A \rightarrow x, U, W) \in P_{L} \cup P_{R}$ implies that

$$
x \in N N \cup T \cup\{\varepsilon\}
$$

Normal Form I

$P_{L}=P_{R}$

Normal Form II

$P_{L} \cap P_{R}=\emptyset$

Normal Form III
$(A \rightarrow x, U, W) \in P_{L} \cup P_{R}$ implies that

$$
x \in N N \cup T \cup\{\varepsilon\}
$$

Normal Form IV
$(A \rightarrow x, U, W) \in P_{L} \cup P_{R}$ implies that

$$
U=\emptyset \text { or } W=\emptyset
$$

Discussion

