Normal Forms of One-Sided Random Context Grammars

Petr Zemek

Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 00 Brno, CZ http://www.fit.vutbr.cz/~izemek

Area

• Theoretical computer science, formal language theory

Topic

• Normal forms of one-sided random context grammars

Area

• Theoretical computer science, formal language theory

Topic

• Normal forms of one-sided random context grammars

What are normal forms?

Motivation?

- theoretical: simplification of proofs
- practical: more efficient construction of parsers

Area

• Theoretical computer science, formal language theory

Topic

• Normal forms of one-sided random context grammars

What are one-sided random context grammars?

Motivation?

- vivid topic in today's formal language theory
- only one existing normal form

- variant of a random context grammar
- $P = P_L \cup P_R$
- $(A \rightarrow x, U, W) \in P$

- variant of a random context grammar
- $P = P_L \cup P_R$
- $(A \rightarrow x, U, W) \in P_L$

- variant of a random context grammar
- $P = P_L \cup P_R$
- $(A \rightarrow x, U, W) \in P_R$

$$\ldots A \xrightarrow{}$$

- variant of a random context grammar
- $P = P_L \cup P_R$
- $(A \rightarrow x, U, W) \in P_R$

$$\ldots A \xrightarrow{} \ldots$$

Example

$$\left(A \to X, \{B, C\}, \{D\}\right) \in P_L$$

bBcECbAcD

One-Sided Random Context Grammars

H

- variant of a random context grammar
- $P = P_L \cup P_R$
- $(A \rightarrow x, U, W) \in P_R$

Example

 $\left(A \to x, \{B, C\}, \{D\}\right) \in P_L$

One-Sided Random Context Grammars

H

- variant of a random context grammar
- $P = P_L \cup P_R$
- $(A \rightarrow x, U, W) \in P_R$

Example

$$\left(A \to x, \{B, C\}, \{D\}\right) \in P_L$$

$$\overleftarrow{bBcECb}AcD \Rightarrow bBcECbxcD$$

Form of all results

For any one-sided random context grammar, there is an equivalent one-sided random context grammar satisfying

< normal form >

Results

Normal Form I

 $P_L = P_R$

Normal Form I

 $P_L = P_R$

Normal Form II

 $P_L \cap P_R = \emptyset$

Results

Normal Form I $P_L = P_R$

Normal Form II

 $P_L \cap P_R = \emptyset$

Normal Form III

 $(A \rightarrow x, U, W) \in P_L \cup P_R$ implies that

 $\mathbf{x} \in NN \cup T \cup \{\varepsilon\}$

Results

Normal Form I $P_{l} = P_{R}$

Normal Form II

 $P_L \cap P_R = \emptyset$

Normal Form III

 $(A \rightarrow x, U, W) \in P_L \cup P_R$ implies that

 $\mathbf{x} \in NN \cup T \cup \{\varepsilon\}$

Normal Form IV

 $(A \rightarrow x, U, W) \in P_L \cup P_R$ implies that

 $U = \emptyset$ or $W = \emptyset$

Discussion