Alexander Meduna and Petr 7emek

Brno University of Technology, Faculty of Information Technology IT4Innovations Centre of Excellence Božetěchova 2, 612 00 Brno, Czech Republic http://www.fit.vutbr.cz/~{meduna, izemek}

Alexander Meduna and Petr Zemek.

Jumping Finite Automata.

International Journal of Foundations of Computer Science (to appear in 2013).

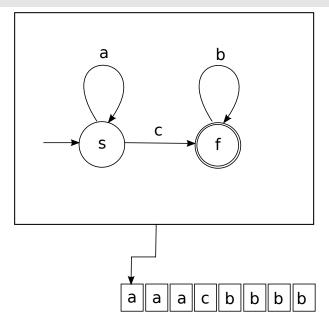
Supported by the IT4I Centre of Excellence CZ.1.05/1.1.00/02.0070.

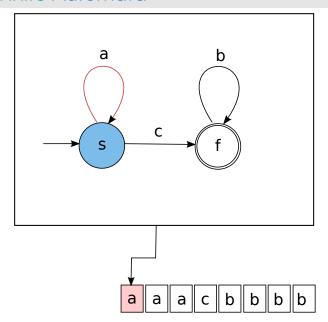
Contents

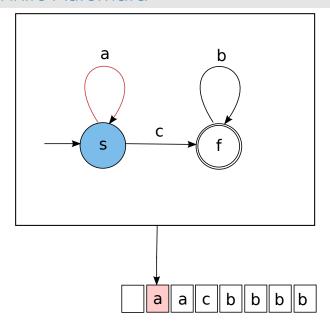
Introduction

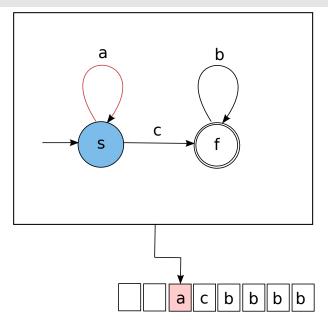
- Definitions and Examples
- Results

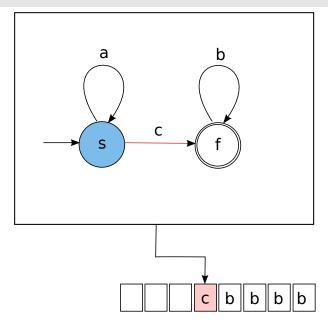
Concluding Remarks and Discussion

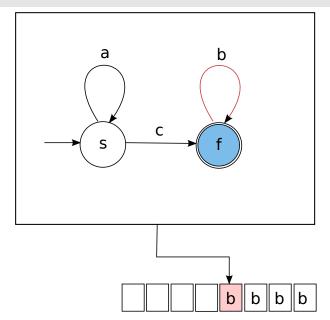


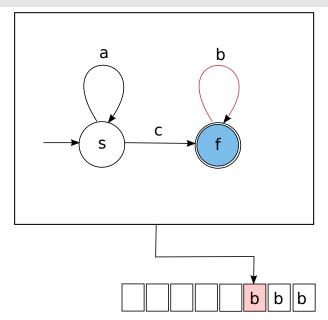


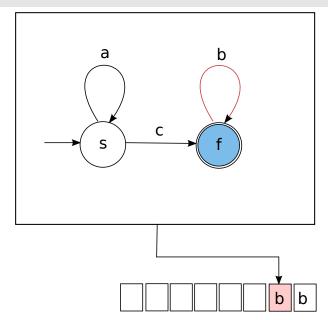


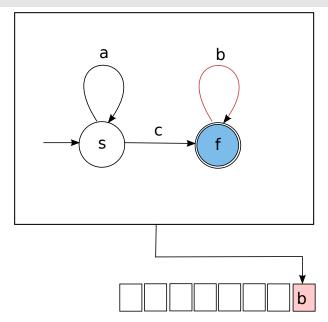


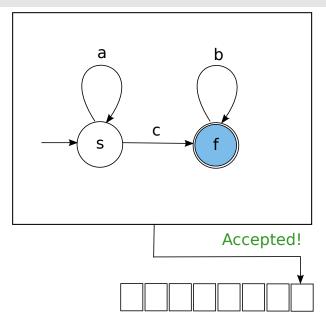


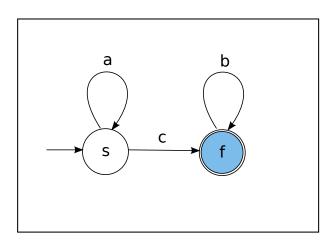




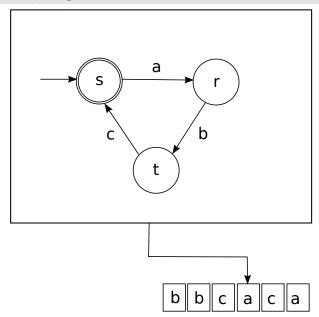


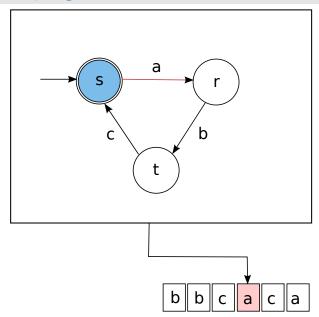


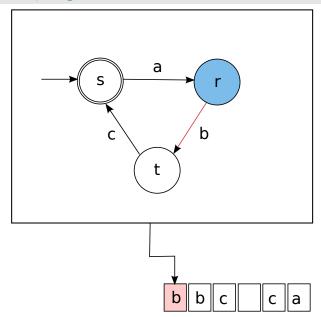


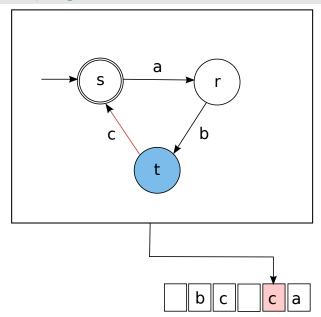


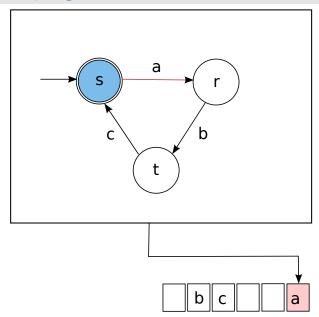
Accepted language: $\{a\}^*\{c\}\{b\}^*$

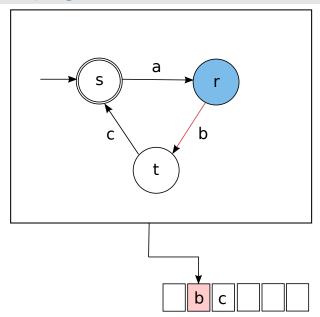


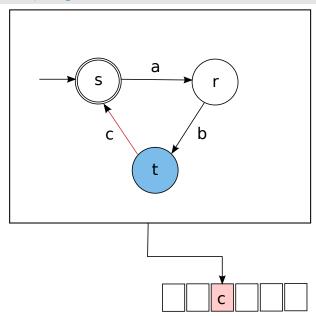


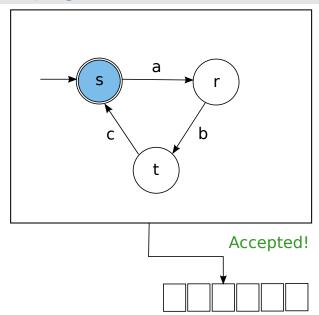


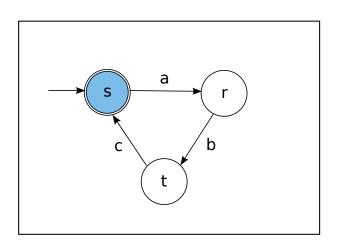












Accepted language: $\{w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c\}$

Definitions

Definition

A general jumping finite automaton (GJFA) is a quintuple

$$M = (Q, \Sigma, R, s, F)$$

where

- Q is a finite set of states;
- Σ is the input alphabet;
- R is a finite set of rules of the form

$$py \rightarrow q$$
 $(p, q \in Q, y \in \Sigma^*)$

- s is the start state:
- F is a set of final states.

Definitions

Definition

A general jumping finite automaton (GJFA) is a quintuple

$$M = (Q, \Sigma, R, s, F)$$

where

- Q is a finite set of states;
- Σ is the input alphabet;
- R is a finite set of rules of the form

$$py \rightarrow q$$
 $(p, q \in Q, y \in \Sigma^*)$

- s is the start state:
- F is a set of final states.

Definition

If all rules $py \to q \in R$ satisfy $|y| \le 1$, then M is a jumping finite automaton (JFA).

Definitions – Continued

Definition

If $x, z, x', z', y \in \Sigma^*$ such that xz = x'z' and $py \to q \in R$, then M makes a *jump* from xpyz to x'qz', symbolically written as

$$X p y z \curvearrowright X' q z'$$

Definitions – Continued

Definition

If $x, z, x', z', y \in \Sigma^*$ such that xz = x'z' and $py \to q \in R$, then M makes a *jump* from xpyz to x'qz', symbolically written as

$$X p y z \curvearrowright X' q z'$$

- \curvearrowright^n intuitively, a sequence of n jumps ($n \ge 0$); mathematically, the nth power of \curvearrowright
- \curvearrowright^* intuitively, a sequence of jumps (possibly empty); mathematically, the reflexive-transitive closure of \curvearrowright

Definitions – Continued

Definition

If $x, z, x', z', y \in \Sigma^*$ such that xz = x'z' and $py \to q \in R$, then M makes a *jump* from xpyz to x'qz', symbolically written as

$$X p y z \curvearrowright X' q z'$$

- \curvearrowright^n intuitively, a sequence of n jumps ($n \ge 0$); mathematically, the nth power of \curvearrowright
- intuitively, a sequence of jumps (possibly empty); mathematically, the reflexive-transitive closure of

Definition

The language accepted by M, denoted by L(M), is defined as

$$L(M) = \{uv : u, v \in \Sigma^*, u\underline{s}v \curvearrowright^* \underline{f}, f \in F\}$$

Example

The JFA

$$M = (\{s, r, t\}, \{a, b, c\}, R, s, \{s\})$$

with

$$R = \{sa \rightarrow r, rb \rightarrow t, tc \rightarrow s\}$$

accepts

$$L(M) = \{w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c\}$$

Example

The JFA

$$M = (\{s, r, t\}, \{a, b, c\}, R, s, \{s\})$$

with

$$R = \{sa \rightarrow r, rb \rightarrow t, tc \rightarrow s\}$$

accepts

$$L(M) = \{ w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c \}$$

Example

The JFA

$$M = (\{s, r, t\}, \{a, b, c\}, R, s, \{s\})$$

with

$$R = \{sa \rightarrow r, rb \rightarrow t, tc \rightarrow s\}$$

accepts

$$L(M) = \{ w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c \}$$

$$bacbc\underline{s}a \land bac\underline{r}bc \ [sa \rightarrow r]$$

Example

The JFA

$$M = (\{s, r, t\}, \{a, b, c\}, R, s, \{s\})$$

with

$$R = \{sa \rightarrow r, rb \rightarrow t, tc \rightarrow s\}$$

accepts

$$L(M) = \{ w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c \}$$

bacbcsa
$$\curvearrowright$$
 bacrbc $[sa \rightarrow r]$
 \curvearrowright bacrbc $[rb \rightarrow t]$

Example

The JFA

$$M = (\{s, r, t\}, \{a, b, c\}, R, s, \{s\})$$

with

$$R = \{sa \rightarrow r, rb \rightarrow t, tc \rightarrow s\}$$

accepts

$$L(M) = \{ w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c \}$$

Example

The JFA

$$M = (\{s, r, t\}, \{a, b, c\}, R, s, \{s\})$$

with

$$R = \{sa \rightarrow r, rb \rightarrow t, tc \rightarrow s\}$$

accepts

$$L(M) = \{ w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c \}$$

Example

The JFA

$$M = (\{s, r, t\}, \{a, b, c\}, R, s, \{s\})$$

with

$$R = \{sa \rightarrow r, rb \rightarrow t, tc \rightarrow s\}$$

accepts

$$L(M) = \{ w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c \}$$

Example

The JFA

$$M = (\{s, r, t\}, \{a, b, c\}, R, s, \{s\})$$

with

$$R = \{sa \rightarrow r, rb \rightarrow t, tc \rightarrow s\}$$

accepts

$$L(M) = \{ w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c \}$$

Example

The GJFA

$$H = (\{s, f\}, \{a, b\}, R, s, \{f\}),$$

with

$$R = \{sba \rightarrow f, fa \rightarrow f, fb \rightarrow f\}$$

accepts

$$L(H) = \{a, b\}^* \{ba\} \{a, b\}^*$$

Example

The GJFA

$$H = (\{s, f\}, \{a, b\}, R, s, \{f\}),$$

with

$$R = \{sba \rightarrow f, fa \rightarrow f, fb \rightarrow f\}$$

accepts

$$L(H) = \{a, b\}^* \{ba\} \{a, b\}^*$$

Example

The GJFA

$$H = (\{s, f\}, \{a, b\}, R, s, \{f\}),$$

with

$$R = \{sba \rightarrow f, fa \rightarrow f, fb \rightarrow f\}$$

accepts

$$L(H) = \{a, b\}^* \{ba\} \{a, b\}^*$$

bbsbaa
$$\sim$$
 bbfa [sba \rightarrow f]

Example

The GJFA

$$H = (\{s, f\}, \{a, b\}, R, s, \{f\}),$$

with

$$R = \{sba \rightarrow f, fa \rightarrow f, fb \rightarrow f\}$$

accepts

$$L(H) = \{a, b\}^* \{ba\} \{a, b\}^*$$

bbsbaa
$$\curvearrowright$$
 bbfa [sba \rightarrow f] \curvearrowright fbb [fa \rightarrow f]

Example

The GJFA

$$H = (\{s, f\}, \{a, b\}, R, s, \{f\}),$$

with

$$R = \{sba \rightarrow f, fa \rightarrow f, fb \rightarrow f\}$$

accepts

$$L(H) = \{a, b\}^* \{ba\} \{a, b\}^*$$

bbsbaa
$$\curvearrowright$$
 bbfa [sba \rightarrow f]
 \curvearrowright fbb [fa \rightarrow f]
 \curvearrowright fb [fb \rightarrow f]

Example

The GJFA

$$H = (\{s, f\}, \{a, b\}, R, s, \{f\}),$$

with

$$R = \{sba \rightarrow f, fa \rightarrow f, fb \rightarrow f\}$$

accepts

$$L(H) = \{a, b\}^* \{ba\} \{a, b\}^*$$

bbsbaa
$$\curvearrowright$$
 bbfa [sba \rightarrow f]
 \curvearrowright fbb [fa \rightarrow f]
 \curvearrowright fb [fb \rightarrow f]
 \curvearrowright f [fb \rightarrow f]

Theorem

Let K be an arbitrary language. Then, K is accepted by a JFA only if K = perm(K).

Theorem

Let K be an arbitrary language. Then, K is accepted by a JFA only if K = perm(K).

Proof Idea

When using $pa \rightarrow q$, a can appear on any position.

Theorem

Let K be an arbitrary language. Then, K is accepted by a JFA only if K = perm(K).

Proof Idea

When using $pa \rightarrow q$, a can appear on any position.

Corollary

There is no JFA that accepts $\{a,b\}^*\{ba\}\{a,b\}^*$.

Theorem

Let K be an arbitrary language. Then, K is accepted by a JFA only if K = perm(K).

Proof Idea

When using $pa \rightarrow q$, a can appear on any position.

Corollary

There is no JFA that accepts $\{a,b\}^*\{ba\}\{a,b\}^*$.

Theorem

GJFAs are strictly stronger than JFAs.

Theorem

Let K be an arbitrary language. Then, K is accepted by a JFA only if K = perm(K).

Proof Idea

When using $pa \rightarrow q$, a can appear on any position.

Corollary

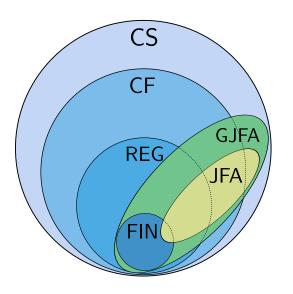
There is no JFA that accepts $\{a,b\}^*\{ba\}\{a,b\}^*$.

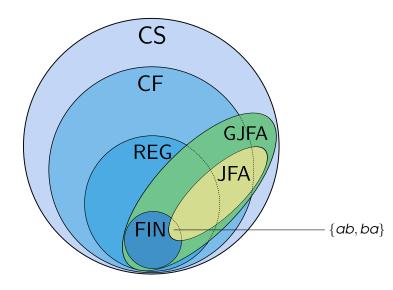
Theorem

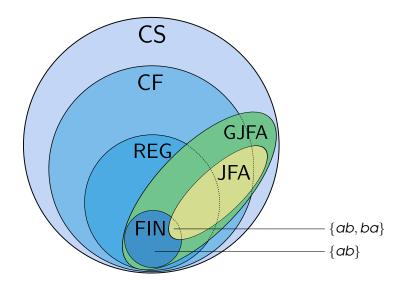
GJFAs are strictly stronger than JFAs.

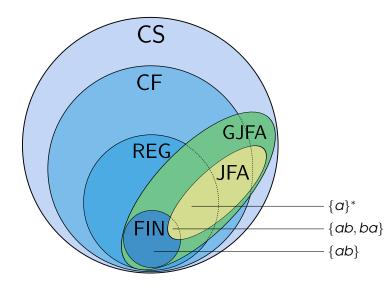
Proof Idea

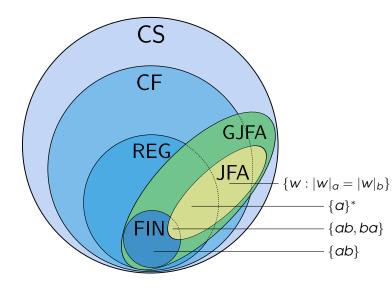
The language $\{a,b\}^*\{ba\}\{a,b\}^*$ is accepted by the GJFA from Example #2.

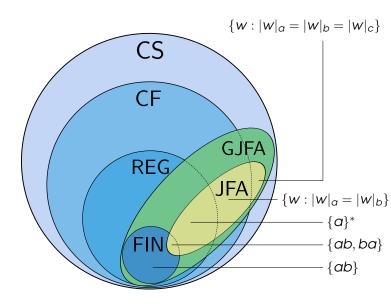


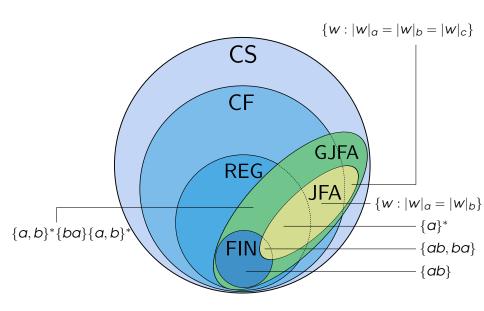


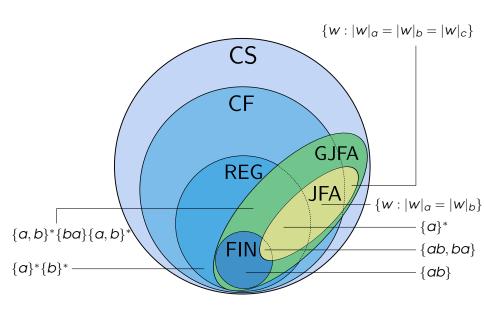


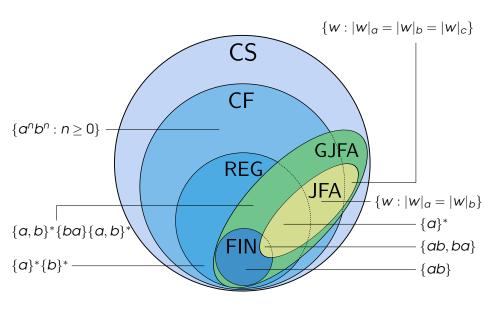


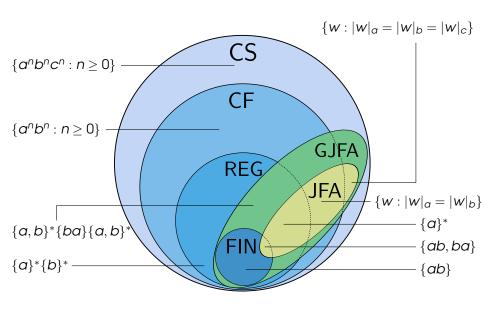












By analogy with finite automata:

- removal of ε -moves $(p \rightarrow q \text{ and } qa \rightarrow r \Rightarrow pa \rightarrow r)$
- making JFAs deterministic

By analogy with finite automata:

- removal of ε -moves $(p \rightarrow q \text{ and } qa \rightarrow r \Rightarrow pa \rightarrow r)$
- making JFAs deterministic

Theorem

Every unary language accepted by a JFA is regular.

By analogy with finite automata:

- removal of ε -moves $(p \rightarrow q \text{ and } qa \rightarrow r \Rightarrow pa \rightarrow r)$
- making JFAs deterministic

Theorem

Every unary language accepted by a JFA is regular.

Proof Idea

In unary languages, it does not matter where the automaton jumps.

By analogy with finite automata:

- removal of ε -moves $(p \rightarrow q \text{ and } qa \rightarrow r \Rightarrow pa \rightarrow r)$
- making JFAs deterministic

Theorem

Every unary language accepted by a JFA is regular.

Proof Idea

In unary languages, it does not matter where the automaton jumps.

Corollary

The language of primes

{ a^p : p is a prime number}

cannot be accepted by any JFA.

Closure Properties

Theorem

JFA is closed under union.

Closure Properties

Theorem

JFA is closed under union.

Proof

We have: Two JFAs

•
$$M_1 = (Q_1, \Sigma_1, R_1, s_1, F_1)$$

•
$$M_2 = (Q_2, \Sigma_2, R_2, s_2, F_2)$$
 $(Q_1 \cap Q_2 = \emptyset)$

We need: JFA $H = (Q, \Sigma, R, s, F)$ such that $L(H) = L(M_1) \cup L(M_2)$

Construction:

$$Q = Q_1 \cup Q_2 \cup \{s\} \qquad (s \notin Q_1 \cup Q_2)$$

$$\Sigma = \Sigma_1 \cup \Sigma_2$$

$$R = R_1 \cup R_2 \cup \{s \to s_1, s \to s_2\}$$

$$F = F_1 \cup F_2$$

Closure Properties – Continued

Theorem

JFA is not closed under concatenation.

Closure Properties – Continued

Theorem

JFA is not closed under concatenation.

Proof

- Consider $K_1 = \{a\}$ and $K_2 = \{b\}$.
- The JFA $M_1 = (\{s, f\}, \{a\}, \{sa \to f\}, s, \{f\})$ accepts K_1 .
- The JFA $M_2 = (\{s, f\}, \{b\}, \{sb \to f\}, s, \{f\})$ accepts K_2 .
- However, there is no JFA that accepts $K_1K_2 = \{ab\}$.

Closure Properties – Summary

	GJFA	JFA
union	+	+
intersection	_	+
concatenation	_	_
intersection with reg. lang.	_	_
complement	_	+
shuffle	?	+
mirror image	?	+
Kleene star	?	_
Kleene plus	?	_
substitution	_	_
regular substitution	_	_
finite substitution	+	_
homomorphism	+	_
arepsilon-free homomorphism	+	_
inverse homomorphism	+	+

Decidability – Summary

	GJFA	JFA
membership	+	+
emptiness	+	+
finiteness	+	+
infiniteness	+	+

Definition

A GJFA $M = (Q, \Sigma, R, s, F)$ is of degree n, where $n \ge 0$, if $py \to q \in R$ implies that $|y| \le n$.

Definition

A GJFA $M = (Q, \Sigma, R, s, F)$ is of degree n, where $n \ge 0$, if $py \to q \in R$ implies that $|y| \le n$.

Example

The GJFA $M = (\{s, p, f\}, \{a, b, c\}, R, s, \{f\})$ with

$$R = \{sabc \rightarrow p, pcc \rightarrow f, fa \rightarrow f\}$$

is of degree 3.

Definition

A GJFA $M = (Q, \Sigma, R, s, F)$ is of degree n, where $n \ge 0$, if $py \to q \in R$ implies that $|y| \le n$.

Example

The GJFA $M = (\{s, p, f\}, \{a, b, c\}, R, s, \{f\})$ with

$$R = \{sabc \rightarrow p, pcc \rightarrow f, fa \rightarrow f\}$$

is of degree 3.

GJFA_n the family of languages accepted by GJFAs of degree *n*

Definition

A GJFA $M = (Q, \Sigma, R, s, F)$ is of degree n, where $n \ge 0$, if $py \to q \in R$ implies that $|y| \le n$.

Example

The GJFA $M = (\{s, p, f\}, \{a, b, c\}, R, s, \{f\})$ with

$$R = \{sabc \rightarrow p, pcc \rightarrow f, fa \rightarrow f\}$$

is of degree 3.

GJFA_n the family of languages accepted by GJFAs of degree *n*

Theorem

 $\mathbf{GJFA}_n \subset \mathbf{GJFA}_{n+1}$ for all $n \geq 0$

Left and Right Jumps

Definition

A GJFA makes a *left jump* from wxpyz to wqxz by $py \rightarrow q$:

where $w, x, y, z \in \Sigma^*$.

Left and Right Jumps

Definition

A GJFA makes a *left jump* from wxpyz to wqxz by $py \rightarrow q$:

$$WXDYZ \cap WQXZ$$

where $w, x, y, z \in \Sigma^*$.

Definition

A GJFA makes a *right jump* from wpyxz to wxqz by $py \rightarrow q$:

$$W \not D YXZ _{r} \curvearrowright WX \not Q Z$$

where $w, x, y, z \in \Sigma^*$.

Left and Right Jumps

Definition

A GJFA makes a *left jump* from wxpyz to wqxz by $py \rightarrow q$:

where $w, x, y, z \in \Sigma^*$.

Definition

A GJFA makes a right jump from wpyxz to wxqz by $py \rightarrow q$:

$$W \not D y X Z_r \curvearrowright W X \not Q Z$$

where $w, x, y, z \in \Sigma^*$.

GJFAs using only left jumps
JFAs using only left jumps
GJFAs using only right jumps
JFAs using only right jumps
JFAs using only right jumps

Theorem

$$_r$$
GJFA = $_r$ JFA = REG

Theorem

 $_{r}$ GJFA = $_{r}$ JFA = REG

Proof Idea

- $_r$ **JFA** = **REG** simulating a finite automaton
- $_r$ GJFA = REG simulating a general finite automaton

Theorem

 $_{r}$ GJFA = $_{r}$ JFA = REG

Proof Idea

- rJFA = REG simulating a finite automaton
- rGJFA = REG simulating a general finite automaton

Theorem

 $_{/}\mathsf{JFA}-\mathsf{REG}
eq \emptyset$

Theorem

$$_{\Gamma}$$
GJFA $=_{\Gamma}$ JFA $=$ REG

Proof Idea

- rJFA = REG simulating a finite automaton
- rGJFA = REG simulating a general finite automaton

Theorem

 $_{/}\mathsf{JFA}-\mathsf{REG}
eq\emptyset$

Proof Idea

$$M = (\{s, p, q\}, \{a, b\}, R, s, \{s\})$$

with

$$R = \{sa \rightarrow p, pb \rightarrow s, sb \rightarrow q, qa \rightarrow s\}$$

accepts

$$_{I}L(M) = \{ w : |w|_{a} = |w|_{b} \}$$

A Variety of Start Configurations

Definition

```
Let M = (Q, \Sigma, R, s, F) be a GJFA. Set
{}^{b}L(M) = \{w \in \Sigma^* : \underline{s}w \curvearrowright^* \underline{f} \text{ with } f \in F\} \qquad \text{(beginning)}
{}^{a}L(M) = \{uv : u, v \in \Sigma^*, u\underline{s}v \curvearrowright^* \underline{f} \text{ with } f \in F\} \qquad \text{(anywhere)}
{}^{e}L(M) = \{w \in \Sigma^* : w\underline{s} \curvearrowright^* \underline{f} \text{ with } f \in F\} \qquad \text{(end)}
```

A Variety of Start Configurations

Definition

```
Let M = (Q, \Sigma, R, s, F) be a GJFA. Set
{}^bL(M) = \{w \in \Sigma^* : \underline{s}w \curvearrowright^* \underline{f} \text{ with } f \in F\} \qquad \text{(beginning)}
{}^aL(M) = \{uv : u, v \in \Sigma^*, u\underline{s}v \curvearrowright^* \underline{f} \text{ with } f \in F\} \qquad \text{(anywhere)}
{}^eL(M) = \{w \in \Sigma^* : w\underline{s} \curvearrowright^* \underline{f} \text{ with } f \in F\} \qquad \text{(end)}
```

```
<sup>a</sup>GJFA GJFAs starting at the beginning
<sup>a</sup>GJFA GJFAs starting anywhere
<sup>e</sup>GJFA GJFAs starting at the end
<sup>b</sup>JFA JFAs starting at the beginning
<sup>a</sup>JFA JFAs starting anywhere
<sup>e</sup>JFA JFAs starting at the end
```

A Variety of Start Configurations

Definition

```
Let M = (Q, \Sigma, R, s, F) be a GJFA. Set
{}^bL(M) = \{w \in \Sigma^* : \underline{s}w \curvearrowright^* \underline{f} \text{ with } f \in F\} \qquad \text{(beginning)}
{}^aL(M) = \{uv : u, v \in \Sigma^*, u\underline{s}v \curvearrowright^* \underline{f} \text{ with } f \in F\} \qquad \text{(anywhere)}
{}^eL(M) = \{w \in \Sigma^* : w\underline{s} \curvearrowright^* \underline{f} \text{ with } f \in F\} \qquad \text{(end)}
```

```
<sup>b</sup>GJFA GJFAs starting at the beginning
```

^a**GJFA** GJFAs starting anywhere ^e**GJFA** GJFAs starting at the end

^b**JFA** JFAs starting at the beginning

^a**JFA** JFAs starting anywhere ^e**JFA** JFAs starting at the end

Observations:

- ${}^{\alpha}L(M)=L(M)$
- ${}^{\alpha}$ GJFA = GJFA and ${}^{\alpha}$ JFA = JFA

Theorem

 a JFA \subset b JFA

Theorem

aJFA $\subset b$ JFA

Proof Idea

The JFA

$$M = (\{s, f\}, \{a, b\}, \{sa \rightarrow f, fb \rightarrow f\}, s, \{f\})$$

satisfies
$${}^bL(M) = \{a\}\{b\}^* \ (\{a\}\{b\}^* \notin {}^a\mathbf{JFA}).$$

Theorem

aJFA $\subset b$ JFA

Proof Idea

The JFA

$$M = (\{s, f\}, \{a, b\}, \{sa \rightarrow f, fb \rightarrow f\}, s, \{f\})$$

satisfies
$${}^bL(M) = \{a\}\{b\}^* \ (\{a\}\{b\}^* \notin {}^a\mathbf{JFA}).$$

Theorem

a
GJFA \subset b GJFA

Theorem

aJFA $\subset b$ JFA

Proof Idea

The JFA

$$M = (\{s, f\}, \{a, b\}, \{sa \rightarrow f, fb \rightarrow f\}, s, \{f\})$$

satisfies
$${}^bL(M) = \{a\}\{b\}^* \ (\{a\}\{b\}^* \notin {}^a\mathbf{JFA}).$$

Theorem

aGJFA $\subset b$ GJFA

Theorem

e
GJFA = a GJFA and e JFA = a JFA

Conclusion and Open Problem Areas

- closure properties of GJFA (shuffle, Kleene star, Kleene plus, and mirror image)
- other decision problems of GJFA and JFA, like equivalence, universality, inclusion, or regularity
- the effect of left jumps to the power of JFAs and GJFAs (we only know that ${}_{J}\mathbf{FA} \mathbf{REG} \neq \emptyset$)
- strict determinism
- applications: verification of a relation concerning the number of symbol occurrences (genetics)

