
Pull Requests, Code Reviews, and
High-Quality Code

Petr Zemek
Lead Software Engineer at Avast

Threat Labs (Viruslab)
petr.zemek@avast.com

https://petrzemek.net

Practical Aspects of Software Design, BUT FIT, 2020-04-28

mailto:petr.zemek@avast.com
https://petrzemek.net


A tale of two workflows

The “lone wolf” workflow:
1 Put all your changes directly into master.

(There is no step 2)

A more cautious workflow:
1 Create a new branch from the current master.
2 Implement the needed change there.
3 Push the branch and create a pull request (PR) from it.
4 Make the PR pass through a code review (CR).
5 The PR is approved and the branch is merged into master.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 2 / 40



What is a pull request (PR)?

• A request to review your changes and merge them.
• Most commonly associated with PRs on GitHub:

https://github.com/avast/retdec/pull/542
• Note: Called a merge request (MR) in some systems.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 3 / 40

https://github.com/avast/retdec/pull/542


What is a code review (CR)?

• A process of looking at another person’s code and verifying it is correct.
• Consists of:

1 Writing comments towards the code.
2 Giving evaluation (approve or request changes).
3 Discussing comments with the author.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 4 / 40



Reasons for creating PRs and doing CRs

• Finding bugs and other defects.
• Learning something new.
• Getting familiar with code that is new to you.
• Increasing the sense of mutual responsibility within your team.
• Finding a better solution.
• Slowing down the process of gradual degradation.
• Complying with formal requirements (e.g. QA).
• Running automated checks before the code is merged.
• Way of contributing to open-source projects.
• Make it harder for adversaries to sneak malicious code into the project.
• Writing better code.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 5 / 40



Outline of the talk

1 How to create PRs?
2 How to review PRs?
3 How to discuss comments?

Note: Writing PRs and doing CRs is a skill.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 6 / 40



How to create PRs?



Do a self-review before submitting a PR

The reviewer is not responsible for your carelessness.

https://www.bebee.com/producer/@ebenezar-john-paul/code-review-checklist

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 8 / 40

https://www.bebee.com/producer/@ebenezar-john-paul/code-review-checklist


More complicated PR⇒more detailed description

Try to put yourself into the reviewer’s shoes.

Describe:
• What does the PR implement and why?
• What were the major issues?
• Why did you decide to solve them in this way?
• Were there any other options?
• Are there any problems to discuss?
• Include any relevant tickets from your bug-tracking system.
• Include before and after screenshots (if applicable).

Examples

https://github.com/rails/rails/pull/32865
https://github.com/discourse/discourse/pull/1320

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 9 / 40

https://github.com/rails/rails/pull/32865
https://github.com/discourse/discourse/pull/1320


Make atomic commits

A PR should be composed of atomic commits:
• Revolve around a single topic and one topic only.
• Separate refactoring, adding new functionality, and fixes.
• Are easy to reason about, review, revert, and bisect.

How to do them:
• Commit diligently/prudently.
• Use Git’s patch mode

(https://blog.petrzemek.net/2016/07/10/git-patch-mode-all-the-way/).
• Use Git’s interactive rebasing

(https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History).

Smells:
• Use of and in commit messages.
• ”Screw it. Nobody will notice.”

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 10 / 40

https://blog.petrzemek.net/2016/07/10/git-patch-mode-all-the-way/
https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History


Do not be afraid to leave comments by yourself

If you want to discuss something with the reviewer, leave a comment.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 11 / 40



Larger changes/PRs should be pre-approved

• To minimize the risk of the changes/PRs not being accepted.
• When in doubt, ask for a concept review.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 12 / 40



Every comment from the reviewer should make you think

• Why have I not thought about that?
• How can I improve the code/PR/... in the future?

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 13 / 40



Include only directly related changes

• Do not include irrelevant fixes of typos, formatting, etc.
• Generally, do not solve multiple issues in the same PR.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 14 / 40



Accept the fact that not all PRs will get merged

C’est la vie.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 15 / 40



How to review PRs?



What to focus on (P1)

Does the code do what it should, nothing is missing, and does not do something it
should not do?

Additionally:
• Does the project function correctly and do all the tests pass?
• Are there tests for the new code?
• Has the documentation been updated?
• What about backward compatibility (versioning)?

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 17 / 40



What to focus on (P2)

Is the code safe?
• Are errors correctly handled?
• Is it impossible for the program to crash?
• Is the code free of security flaws?
• Is the code thread-safe?
• Are there no resource leaks?

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 18 / 40



What to focus on (P3)

Is the code readable, maintainable, and not needlessly inefficient?
• Does the code fit into the project or was it hacked there (e.g. shotgun

surgery)?
• Is there a more idiomatic way of writing something?
• Can the code be shortened by using existing libraries?
• Is there no duplication?
• Are there no useless things that unnecessarily slow down the code?
• Isn’t the implemented solution over-engineered?

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 19 / 40



What to focus on (P4)

Does the code conform to project’s coding conventions?
• Spaces vs tabs.
• No useless trailing whitespace.
• Naming of variables (snake case vs camelCase).
• Code formatting in general (placement of curly braces, line wrapping, etc.).
• Typos and grammar in strings/comments.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 20 / 40



Be respectful, but brutally honest

If there is something wrong, it is your duty to report it, but in a respectful way.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 21 / 40



You are reviewing the code, not the person

So let’s not get personal.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 22 / 40



Strive to make useful and informative remarks

And leave the useless ones at home...
• Include a reason why.
• If you criticize something, include an alternative way to consider.
• Include links to supportive material (articles, talks).
• Ask questions if you do not understand something.
• Ask questions to make the PR creator think (”What happens if...”).
• Report issues properly (steps to reproduce, expected behavior, actual

behavior).
• Consider reporting an issue by crafting a failing test.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 23 / 40



Show honest appreciation

Has to be honest and specific (i.e. not generic).

Examples:
• ”Cool, I did not know about distutils.util.strtobool(). Nice!”
• ”Thank you for analyzing the Perl code, it must have been hard.”
• ”I have learnt a new word today (’spuriously’), thanks!”

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 24 / 40



Always leave a comment

Even if only a plain and simple ”Looks good to me -”.

https://knowyourmeme.com/photos/1287705-lgtm

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 25 / 40

https://knowyourmeme.com/photos/1287705-lgtm


Mind the wording

Pay close attention at the words that you choose.
• Use ”I suggest” or ”Consider” for non-critical issues.
• Use we instead of I/you.
• Prefix minor issues with ”Nitpick:”.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 26 / 40



One PR can be reviewed by multiple people

Changes to critical parts of the code should be reviewed by multiple people.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 27 / 40



Finish the review in a timely manner

Do not wait a month to do the review.

A maintainer’s fail

https://github.com/JetBrains/teamcity-messages/pull/226

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 28 / 40

https://github.com/JetBrains/teamcity-messages/pull/226


Anti-patterns
• Focusing primarily on nitpics
• Forcing subjective changes
• Forcing external contributors to fix nitpicks
• Inconsistent feedback
• “Bikeshedding”
• Back and forth (ping-pong) reviews
• Constantly bothering/interrupting the author during the review

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 29 / 40



How to discuss comments?



Show appreciation

• ”A very good point.”
• ”Nice catch!”
• ”I did not know about that, thank you!”
• ”The proposed alternative is indeed better. Let’s use it.”

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 31 / 40



Do not take comments personally

It is (well, should be) the code that is being discussed, not you.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 32 / 40



Do not be afraid to disagree
Code review should be a discussion, not a list of commands.
• However, if you disagree, you have to explain why.
• Please, let the reason not be ”Screw it, I am too lazy to do that”.

https://www.flickr.com/photos/72665859@N03/6558098435

How not to do it ;-)

https://github.com/pypa/twine/issues/153

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 33 / 40

https://www.flickr.com/photos/72665859@N03/6558098435
https://github.com/pypa/twine/issues/153


Do not be afraid to ask for help

You can tag (invite) other people and ask for their opinion.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 34 / 40



React to all comments and mark discussions as resolved

• Explain how the issue has been resolved.
• For trivial issues, marking the discussion as resolved is enough though.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 35 / 40



Conclusion



What we have skipped

• How to select who should review the PR?
• How to review a large PR?
• GitHub/GitLab/BitBucket/... specifics
• Continuous integration (CI)
• PR hooks
• Bots
• Licensing, contributor license agreements (CLAs)
• . . .

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 37 / 40



Recommended reading

Andrew Hunt, David Thomas: The Pragmatic Programmer, Addison-Wesley, 1999
In Czech: Andrew Hunt, David Thomas: Programátor pragmatik, Computer Press, 2007

Steve McConnell: Code Complete (2nd edition), Microsoft Press, 2004
In Czech: Steve McConnell: Dokonalý kód, Computer Press, 2006

Robert C. Martin: Clean Code, Prentice Hall, 2008
In Czech: Robert C. Martin: Čistý kód, Computer Press, 2009

Robert C. Martin: The Clean Coder, Prentice Hall, 2011
In Czech: -

Sverre H. Huseby: Innocent Code, John Wiley & Sons, 2004
In Czech: Sverre H. Huseby: Zranitelný kód, Computer Press, 2006

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 38 / 40



A bit of harmless self-promotion (my blog posts)

Petr Zemek: Čistý kód, který funguje (2009-10-24)

Petr Zemek: Vysoce kvalitnı́ kód (2014-04-18)

Petr Zemek: Důvody, proč psát jednotkové testy (2014-06-20)

Petr Zemek: Zakomentovaný kód (2014-11-02)

Petr Zemek: Udržitelný vývoj (2015-03-15)

Petr Zemek: Proč rozlǐsovat jednotkové a integračnı́ testy (2015-04-18)

Petr Zemek: Na co se sousťredit při reviźıch kódu (2018-05-08)

Petr Zemek: Proč vytvářet funkce (2019-07-27)

Petr Zemek: Tips for Creating Merge Requests and Doing Code Reviews (2020-01-31)

Petr Zemek: Série ”Chyby v návrhu”

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 39 / 40

https://cs-blog.petrzemek.net/2009-10-24-cisty-kod-ktery-funguje
https://cs-blog.petrzemek.net/2014-04-18-vysoce-kvalitni-kod
https://cs-blog.petrzemek.net/2014-06-20-duvody-proc-psat-jednotkove-testy
https://cs-blog.petrzemek.net/2014-11-02-zakomentovany-kod
https://cs-blog.petrzemek.net/2015-03-15-udrzitelny-vyvoj
https://cs-blog.petrzemek.net/2015-04-18-proc-rozlisovat-jednotkove-a-integracni-testy
https://cs-blog.petrzemek.net/2018-05-08-na-co-se-soustredit-pri-revizich-kodu
https://cs-blog.petrzemek.net/2019-07-27-proc-vytvaret-funkce
https://engineering.avast.io/tips-for-creating-merge-requests-and-doing-code-reviews/
https://cs-blog.petrzemek.net/taxonomy/term/61


Summary

• Strive to use workflows that utilize PRs and CRs.
• PRs and CRs provide many benefits.
• Writing PRs and doing CRs is a skill.
• Do a self-review before submitting a PR.
• Try to make the PR as reviewable as possible.
• Make atomic commits and atomic PRs.
• Every comment from the reviewer should make you think.
• When reviewing code, focus on the most important things first.
• Strive to make useful and informative comments.
• Focus on the code, leave personal issues behind.
• Show honest appreciation.
• Do not be afraid to disagree.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code 40 / 40


	Introduction
	How to create PRs?
	How to review PRs?
	How to discuss comments?
	Conclusion

