Pull Requests, Code Reviews, and
High-Quality Code

Petr Zemek

Lead Software Engineer at Avast
Threat Labs (Viruslab)
petrzemek@avast.com
https://petrzemek.net

JLavast

Practical Aspects of Software Design, BUT FIT, 2020-04-28

mailto:petr.zemek@avast.com
https://petrzemek.net

A tale of two workflows

The “lone wolf” workflow:
@ Put all your changes directly into master.
(There is no step 2)

A more cautious workflow:
©® Create a new branch from the current master.
® Implement the needed change there.
® Push the branch and create a pull request (PR) from it.
@ Make the PR pass through a code review (CR).
® The PR is approved and the branch is merged info master.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 2/40

What is a pull request (PR)?

e A request to review your changes and merge them.
e Most commonly associated with PRs on GitHub:

Parallelize compilation of YARA rules during installation Ean
(#540) #542

[STERTY] PeterMatula merged 2 commits into master ffom enhancenent -yara-rules-conpilation-parallelization-540 (&3 On Apr 24, 2019

@ Conversation 0 o-Commits 2 B Checks 0 [3Files changed 1 430213 mmmm
7 Petermatuia v

When you run cmake with -DRETDEC_compILE vara=oN (the defaul), YARA rules that RetDec uses

are compiled during the installation step, which makes decompiations run faster (no need to compile
them on the fly during each decompilation). The issue is that YARA rules are compiled sequentially, Assignees o
which takes around 50 seconds to compile them on my machine. 7 Petermatua

This PR parallelizes their compilation by using all available cores. Now, the compilation takes around

10 seconds on my machine (Intel Xeon E5-1650 @ 3.60GHz, 6 cores with HT = 12 threads). Labels. o
C-buikd system
I have implemented the easy way (using all available cores) as | was unable to find a portable: o
Solution of obtaining the value of -3 (when using make) or /n (when using Visual Studio).
Implements #540.
Milestone o

https://github.com/avast/retdec/pull/542
e Note: Called a merge request (MR) in some systems.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 3/40

https://github.com/avast/retdec/pull/542

What is a code review (CR)

e A process of looking at another person’s code and verifying it is correct.

e Consists of:

?

© Writing comments towards the code.

@® Giving evaluation (approve or request changes).

® Discussing comments with the author.

Code Quality Measurement:
WTFs/Minute

=
O

N

WTF is
this shit?|

Good Code

htp://commadot.com

Bad Code

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code

4/40

Reasons for creating PRs and doing CRs

¢ Finding bugs and other defects.

¢ Learning something new.

e Getting familiar with code that is new to you.

¢ Increasing the sense of mutual responsibility within your feam.
¢ Finding a better solution.

e Slowing down the process of gradual degradation.

e Complying with formal requirements (e.g. QA).

* Running automated checks before the code is merged.

* Way of contributing to open-source projects.

* Make it harder for adversaries to sneak malicious code into the project.
e Writing better code.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 5/40

Outline of the talk

® How to create PRs?
® How to review PRs?
® How to discuss comments?

Note: Writing PRs and doing CRs is a skill.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 6/40

How to create PRs?

Do a self-review before submifting a PR

The reviewer is not responsible for your carelessness.

NO NEED To DOUBLE cHECk NO NEED To Look AT

THIS CHANGE LS‘\" iF SoMmE PRO- THIS CHANGE LiST Too MsEl—Y’
BLEMS REMAIN THE REVEWER '\ SuRe THE AUTHoR
Will CcATeH THEM. UNOWS WHAT HE'S DoinNG-.

https://www.bebee.com/producer/@ebenezarjohn-paul/code-review-checklist

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code |

https://www.bebee.com/producer/@ebenezar-john-paul/code-review-checklist

More complicated PR = more detailed description

Try to put yourself into the reviewer’s shoes.

Describe:
e What does the PR implement and why?
What were the major issues?
Why did you decide to solve them in this way?
Were there any other options?
Are there any problems to discuss?
Include any relevant tickets from your bug-tracking system.
Include before and after screenshots (if applicable).

https://github.com/rails/rails/pull/32865
https://github.com/discourse/discourse/pull/ 1320

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code |

https://github.com/rails/rails/pull/32865
https://github.com/discourse/discourse/pull/1320

Make atomic commits

A PR should be composed of atomic commits:
¢ Revolve around a single topic and one topic only.
e Separate refactoring, adding new functionality, and fixes.
e Are easy to reason about, review, revert, and bisect.

How to do them:
e Commit diligently/prudently.

e Use Git's pafch mode
(https://blog.petrzemek.net/2016/07/10/git-patch-mode-all-the-way/).

e Use Git's inferactive rebasing
(https://git-scrn.com/book/en/v2/Git-Tools-Rewriting-History).

Smells:
¢ Use of andin commit messages.
e “Screw it. Nobody will notice.”

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code

https://blog.petrzemek.net/2016/07/10/git-patch-mode-all-the-way/
https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History

Do not be afraid to leave comments by yourself

If you want to discuss something with the reviewer, leave a comment.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 11/40

Larger changes/PRs should be pre-approved

¢ To minimize the risk of the changes/PRs not being accepted.
* When in doubt, ask for a concept review.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 12/40

Every comment from the reviewer should make you think

* Why have | not thought about that?
e How can | improve the code/PR/... in the future?

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 13/40

Include only directly related changes

¢ Do not include irrelevant fixes of typos, formatting, etc.
e Generally, do not solve multiple issues in the same PR.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 14/40

Accept the fact that not all PRs will get merged

C’est la vie.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 15/40

How to review PRs?

What to focus on (P1)

Does the code do what it should, nothing is missing. and does not do something it
should not do?

Additionally:
e Does the project function correctly and do all the tests pass?
e Are there tests for the new code?
¢ Has the documentation been updated?
e What about backward compadatibility (versioning)?

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 17 /40

What to focus on (P2)

Is the code safe?
* Are errors correctly handled?
e |s it impossible for the program to crash?
Is the code free of security flaws?
Is the code thread-safe?
Are there no resource leaks?

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 18/40

What to focus on (P3)

Is the code readable, maintainable, and not needlessly inefficient?
e Does the code fit info the project or was it hacked there (e.g. shotgun
surgery)?
Is there a more idiomatic way of writing something?
Can the code be shortened by using existing libraries?
e |s there no duplication?
Are there no useless things that unnecessarily slow down the code?
Isn’t the implemented solution over-engineered?

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 19/40

What to focus on (P4)

Does the code conform to project’s coding conventions?
e Spaces vs tabs.
e No useless trailing whitespace.
e Naming of variables (snake_case VS camelCase).
e Code formatting in general (placement of curly braces, line wrapping, etc.).
e Typos and grammair in strings/comments.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 20/40

Be respectful, but brutally honest

If there is something wrong, it is your duty to report it, but in a respectful way.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 21/40

You are reviewing the code, not the person

So let’s not get personal.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 22/40

Strive to make useful and informative remarks

And leave the useless ones at home...
¢ |Include areason why.
¢ If you criticize something. include an alternative way to consider.
Include links to supportive material (arficles, talks).
Ask guestions if you do not understand something.
Ask guestions to make the PR creator think (“"What happens if...”).

Report issues properly (steps to reproduce, expected behavior, actual
behavion).

Consider reporting an issue by crafting a failing test.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 23/40

Show honest appreciation

Has to be honest and specific (i.e. not generic).

Examples:
e “Cool, | did not know about distutils.ufil.strtobool(). Nice!”
e “Thank you for analyzing the Perl code, it must have been hard.”
e “I have learnt a new word today (‘spuriously’), thanks!”

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 24/40

Always leave a comment

Even if only a plain and simple “Looks good to me y”.

https://knowyourmeme.com/photos/1287705-Igtm

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 25/40

https://knowyourmeme.com/photos/1287705-lgtm

Mind the wording

Pay close attention at the words that you choose.
e Use “I suggest” or “Consider” for non-critical issues.
¢ Use we instead of I/you.
e Prefix minor issues with “Nitpick:”.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 26/40

One PR can be reviewed by multiple people

Changes to critical parts of the code should be reviewed by multiple people.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 27/40

Finish the review in a timely manner

Do not wait a month to do the review.

A maintainer’s fail

https://github.com/JetBrains/teamcity-messages/pull/226

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 28/40

https://github.com/JetBrains/teamcity-messages/pull/226

Anti-patterns

e Focusing primarily on nitpics
¢ Forcing subjective changes
e Forcing external contributors 1o fix nitpicks

* |[nconsistent feedback
¢ "Bikeshedding”

e Back and forth (ping-pong) reviews

e Constantly bothering/interrupting the author during the review

O 1

. 1 Am Devloper
/ @iamdevioper

10 lines of code = 10 issues.
500 lines of code = "looks fine."

Code reviews.

1:58 PM - 5 Nov 2013

830 Retueets 5541Lkes PP O QFELLO0P

nexk Qs &

Follow) v
N J

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code

29/40

How to discuss comments?

Show appreciation

e “A very good point.”

e “Nice catch!”

e “| did not know about that, thank you!”

e “The proposed alternative is indeed better. Let’s use it.”

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 31/40

Do not take comments personally

It is (well, should be) the code that is being discussed, not you.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 32/40

Do not be afraid o disagree

Code review should be a discussion, not a list of commands.
* However, if you disagree, you have to explain why.
* Please, let the reason not be “Screw if, | am foo lazy to do that”,

https://www.flickr.com/photos/72665859@N03/6558098435

How not to do it ;-)

https://github.com/pypa/twine/issues/153

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 33/40

https://www.flickr.com/photos/72665859@N03/6558098435
https://github.com/pypa/twine/issues/153

Do not be afraid to ask for help

You can tag (invite) other people and ask for their opinion.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 34/40

React to all comments and mark discussions as resolved

e Explain how the issue has been resolved.
e For trivial issues, marking the discussion as resolved is enough though.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 35/40

Conclusion

What we have skipped

How to select who should review the PR?

* How to review a large PR?
GitHub/GitLab/BitBucket/... specifics
Continuous integration (CI)

PR hooks

e Bots

e Licensing, contributor license agreements (CLAS)

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 37/40

Recommended reading

¥- Andrew Hunt, David Thomas: The Pragmatic Programmer, Addison-Wesley, 1999
In Czech: Andrew Hunt, David Thomas: Programator pragmatik, Computer Press, 2007

‘ Steve McConnell: Code Complete (2nd edition), Microsoft Press, 2004
In Czech: Steve McConnell: Dokonaly kéd, Computer Press, 2006

¥y Robert C. Martin: Clean Code, Prentice Hall, 2008
In Czech: Robert C. Martin: Cisty kod, Computer Press, 2009

\ Robert C. Martin: The Clean Coder, Prentice Hall, 2011
In Czech: -

¥,y Sverre H. Huseby: Innocent Code, John Wiley & Sons, 2004
In Czech: Sverre H. Huseby: Zranitelny kdd, Computer Press, 2006

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 38/40

A bit of harmless self-promotion (my blog posts)

Petr Zemek: Cisty kod, ktery funguje (2009-10-24)

Petr Zemek: Vysoce kvalitni kdd (2014-04-18)

Petr Zemek: Davody, procC psat jednotkové testy (2014-06-20)

Petr Zemek: Zakomentovany kéd (2014-11-02)

Petr Zemek: UdrZitelny vyvoj (2015-03-15)

Petr Zemek: Pro¢ rozliSovat jednotkové a integracni testy (2015-04-18)
Petr Zemek: Na co se sousttedit pfi revizich kddu (2018-05-08)

Petr Zemek: Pro¢ vytvéret funkce (2019-07-27)

Petr Zemek: Tips for Creating Merge Requests and Doing Code Reviews (2020-01-31)

Petr Zemek: Série “Chyby v ndvrhu”

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 39/40

https://cs-blog.petrzemek.net/2009-10-24-cisty-kod-ktery-funguje
https://cs-blog.petrzemek.net/2014-04-18-vysoce-kvalitni-kod
https://cs-blog.petrzemek.net/2014-06-20-duvody-proc-psat-jednotkove-testy
https://cs-blog.petrzemek.net/2014-11-02-zakomentovany-kod
https://cs-blog.petrzemek.net/2015-03-15-udrzitelny-vyvoj
https://cs-blog.petrzemek.net/2015-04-18-proc-rozlisovat-jednotkove-a-integracni-testy
https://cs-blog.petrzemek.net/2018-05-08-na-co-se-soustredit-pri-revizich-kodu
https://cs-blog.petrzemek.net/2019-07-27-proc-vytvaret-funkce
https://engineering.avast.io/tips-for-creating-merge-requests-and-doing-code-reviews/
https://cs-blog.petrzemek.net/taxonomy/term/61

Summary

Strive to use workflows that utilize PRs and CRs.

PRs and CRs provide many benefits.

Writing PRs and doing CRs is a skill.

Do a self-review before submitting a PR.

Try to make the PR as reviewable as possible.

Make atomic commits and atomic PRs.

e Every comment from the reviewer should make you think.
* When reviewing code, focus on the most important things first.
Strive to make useful and informative comments.

Focus on the code, leave personal issues behind.

Show honest appreciation.

Do not be afraid to disagree.

Petr Zemek: Pull Requests, Code Reviews, and High-Quality Code | 40/40

	Introduction
	How to create PRs?
	How to review PRs?
	How to discuss comments?
	Conclusion

