
High-Quality Code

Petr Zemek
Lead Software Engineer at Gen™

petr.zemek@gendigital.com
https://petrzemek.net, @s3rvac

Practical Aspects of Software Design, BUT FIT, 2023-05-03

mailto:petr.zemek@gendigital.com
https://petrzemek.net
https://twitter.com/s3rvac

Outline

Introduction

What to focus on

Selected techniques

Anti-patterns

Recommended reading and summary https://bit.ly/374qs8m

Petr Zemek: High-Quality Code 2 / 38

https://bit.ly/374qs8m

Introduction

A tale of two libraries

1 The first library:
• Very poor documentation
• Trouble with compilation because of missing dependencies
• Segfaults when given a file without an extension
• Calls exit() when encountering an error
• Sometimes prints output to stdout/stderr
• Hard to change because of unreadable code and missing tests

2 The second library:
• Amazing documentation
• Seamless integration, automatic resolving of missing dependencies
• Crystal-clear interface
• Proper error handling and propagation of errors
• Readable code that makes modifications a breeze
• Code is completely covered by tests

Which one would you use? Which one do you write? ;-)

Petr Zemek: High-Quality Code 4 / 38

What is high-quality code?

• Correct
• Robust, anticipates and handles edge cases and errors
• Safe and secure
• Well designed and organized without being over-engineered
• Readable, easy to change, allows sustainable development
• Testable and covered by tests
• Thoroughly documented
• Efficient without being prematurely optimized

Notes:
• Everything mentioned above is connected
• Code quality is not binary or absolute
• Perfection is not attainable

Petr Zemek: High-Quality Code 5 / 38

Why do we strive to write high-quality code?

• To satisfy our users and employers
• To save time and money

https://bit.ly/2RgMMU0

• To prevent catastrophes or security breaches
• Code is written once but read/modified many times
• To show that we are true professionals
• Thinking of your fellow programmers (or your future self)

https://bit.ly/3s4pdgK

Petr Zemek: High-Quality Code 6 / 38

https://bit.ly/2RgMMU0
https://bit.ly/3s4pdgK

How to measure code quality?

Another measure: How easy is to correctly change the code.

Petr Zemek: High-Quality Code 7 / 38

What to focus on

Code correctness

• What is correctness?
• Correctness with respect to what?
• Absolutely correct code
• Understand functional requirements
• Understand non-functional requirements

Petr Zemek: High-Quality Code 9 / 38

Code robustness and error handling

• One of the hardest parts of software development
• Robust programming

• Paranoia
• Stupidity
• Cannot happen

• Be conservative in what you send, be liberal in what you accept
• Anything that might happen will happen, handle all edge cases
• Understand what might fail, handle all errors

int fclose(FILE *stream);

• Understand error-handling mechanisms
• Propagating errors upwards

Petr Zemek: High-Quality Code 10 / 38

Code safety and security

• Safety vs security
• Buffer overflows, crashes

char buf[BUFSIZE];
std::cin >> buf; // gets(buf); (until C++20)

• Thread (un)safety, common concurrency issues
• Resource leaks
• Improper handling of inputs

$id = $_GET[’id’];
$sql = "SELECT * FROM users WHERE id = $id";
$result = $mysqli->query($sql);

• Understand common safety and security flaws

Petr Zemek: High-Quality Code 11 / 38

Code readability, extensibility, and maintainability

• Great, descriptive naming
• Consistency is key
• Split code into smaller functions/classes
• Keep code at a single level of abstraction

if ((currentDate() - user.getBirthDate()) >= Years(18))
// vs
if (user.isOldEnoughToDrink())

• Logical organization into functions, classes, etc.
• High cohesion, low coupling

https://bit.ly/3krJzML

• Comments explaining why
• Understandable is better than clever
• Learn design principles and patterns (e.g. SOLID, GoF)

Petr Zemek: High-Quality Code 12 / 38

https://bit.ly/3krJzML

Code covered by tests

https://bit.ly/3nCt01e

• Why do we write tests?
• Untested code does not work
• Selected types of tests:

• Unit tests
• Integration tests
• End to end tests
• Performance tests
• Compatibility tests

• Code coverage
• Continuous integration (CI)
• Testing the UI
• Testing examples in the documentation

Petr Zemek: High-Quality Code 13 / 38

https://bit.ly/3nCt01e

Testability
• Code has to be testable
• Learning how to write testable code takes time
• An example technique: Dependency injection

public class Service {
private DBConn dbConn;

public Service(Config config) {
dbConn = new PostgreSQLConn(config);

}
// vs
public Service(DBConn dbConn) {

this.dbConn = dbConn;
}

}

• Tests improve your code
• Consider writing tests first

Petr Zemek: High-Quality Code 14 / 38

Documentation

https://bit.ly/3vDMPbn

• The bane of programmers
• Everybody wants to have it, nobody wants to write it
• User vs development documentation
• Important to keep up-to-date
• Although outdated documentation is better than

no documentation

Petr Zemek: High-Quality Code 15 / 38

https://bit.ly/3vDMPbn

Knowledge of the used programming language(s)

• Syntax and semantics
• Abstractions
• Memory management
• Language idioms

i = 0
while i < len(items):

print(items[i])
i += 1

vs
for item in items:

print(item)

• Different implementations, OS specifics
• Common pitfalls
• Strengths and weaknesses, when to use a particular language

Petr Zemek: High-Quality Code 16 / 38

Knowledge of the used libraries

• Learn what is provided by standard libraries
• Thoroughly read and understand the documentation

https://bit.ly/3399X52• Know what libraries are available (or search)

Petr Zemek: High-Quality Code 17 / 38

https://bit.ly/3399X52

Knowledge of miscellaneous topics

Just a few examples:
• Regular expressions
• Floating point arithmetic
• Encodings
• Time zones
• Cryptography
• Commonly used protocols, such as HTTP, DNS, IP, TCP vs UDP
• Concurrency and parallelism, synchronization primitives
• Data structures and algorithms
• Databases
• Operating systems, HW

Petr Zemek: High-Quality Code 18 / 38

Interface design

• Make interfaces easy to use correctly and hard to use incorrectly.
– Scott Meyers

• Your public interface should be crystal clear
• Aim for having a consistent interface

// Inconsistent position of parameters
int fputs(const char *s, FILE *stream);
int fprintf(FILE *stream, const char *format, ...);

// Inconsistent naming
#include <sstream>
std::stringstream s;

// Duplicities
size_type size() const;
size_type length() const;

Petr Zemek: High-Quality Code 19 / 38

Coding conventions

• Follow style guides and code conventions
• Spaces vs tabs
• Naming of variables (snake case vs camelCase)
• Code formatting in general (e.g. placement of curly braces, line wrapping)

• Uniformity is king
• Pay attention to detail
• Check typos and grammar in strings/comments

Petr Zemek: High-Quality Code 20 / 38

Performance

• What is an optimization?
• Typical optimization areas

• Execution time
• Memory usage
• Response times
• Throughput
• Network communication

• Effectivity vs efficiency
• Golden rule: Do not optimize
• Understand trade-offs
• Always do profiling and perform benchmarks (avoid pessimization)
• Do not write needlessly inefficient code
• Know your language, compiler, operating system, architecture, etc.

Petr Zemek: Optimalizace kódu (BUT FIT, 2013)

Petr Zemek: High-Quality Code 21 / 38

https://www.youtube.com/watch?v=Pve0iscmlY4

Selected techniques

Pull requests and code reviews

The “lone wolf” workflow:
1 Put all your changes directly into master

(There is no step 2)

A more cautious workflow:
1 Create a new branch from the current master
2 Implement the needed change there
3 Push the branch and create a pull request (PR) from it
4 Make the PR pass through a code review (CR)
5 The PR is approved and the branch is merged into master

Petr Zemek: High-Quality Code 23 / 38

What is a pull request (PR)?

• A request to review your changes and merge them
• Most commonly associated with PRs on GitHub:

https://github.com/avast/retdec/pull/542

• Note: Called a merge request (MR) in some systems

Petr Zemek: High-Quality Code 24 / 38

https://github.com/avast/retdec/pull/542

What is a code review (CR)?

• A process of looking at another person’s code and checking if it is correct
• Consists of:

1 Writing comments towards the code
2 Giving evaluation (approve or request changes)
3 Discussing comments with the author

Petr Zemek: High-Quality Code 25 / 38

Reasons for creating PRs and doing CRs

• Finding bugs and other defects
• Learning something new
• Increasing the sense of mutual responsibility within your team
• Finding a better solution
• Running automated checks before the code is merged
• Writing better code
• and more...

Petr Zemek: Pull requesty a revize kódu (IVS 2020)

Petr Zemek: High-Quality Code 26 / 38

https://www.youtube.com/watch?v=6s5f-0WYb1s

Pair programming

https://bit.ly/3nyhDYe

• Two programmers work together at one workstation
• Roles: driver and navigator
• Increased person/hours vs fewer defects
• Knowledge sharing
• Remote pairing
• Mob programming

Petr Zemek: High-Quality Code 27 / 38

https://bit.ly/3nyhDYe

Refactoring

https://bit.ly/3e7fu2x

• Restructuring existing code without changing
its external behavior

• Code smells

https://bit.ly/3vym48c

• Improves maintainability and extensibility
• When to refactor
• Requires having tests
• Not all changes are refactorings
• https://refactoring.guru/refactoring

Petr Zemek: High-Quality Code 28 / 38

https://bit.ly/3e7fu2x
https://bit.ly/3vym48c
https://refactoring.guru/refactoring

Test-driven development (TDD)

https://bit.ly/3gQntTm

• A software development practice
• Clean code that works
• Leads to testable code
• Writing the interface you wish you had
• Seeing the test fail is important
• Do not refactor when your tests are failing
• Tests are already written when the code is finished

Petr Zemek: High-Quality Code 29 / 38

https://bit.ly/3gQntTm

Anti-patterns

What prevents programmers from writing high-quality code

• Inexperience
• Laziness

https://bit.ly/3u6c1XB• Disinterest, unwillingness to learn
• Lack of sense for detail, sloppiness
• Bosses or coworkers
• Circumstances (e.g. deadlines)

https://bit.ly/3eL0qXh

Petr Zemek: High-Quality Code 31 / 38

https://bit.ly/3u6c1XB
https://bit.ly/3eL0qXh

Anti-pattern: Cargo cult programming

https://bit.ly/3gMTCLH

• A ritual inclusion of code that serves no real purpose

with open(’file.txt’) as f:
data = f.read()
f.close()

• Copy-and-paste programming
• Blind following of practices without understanding why
• Some cargo culting might be unavoidable

public static void main(String[] args)

Petr Zemek: High-Quality Code 32 / 38

https://bit.ly/3gMTCLH

Anti-pattern: Voodoo programming

https://bit.ly/335UClK

• Example: if x > 1 (fail)
• if x >= 1 (fail)
• if x >= 0 (fail)
• if x < 1 (pass)

• Another example:

https://bit.ly/3ktYtC3

Petr Zemek: High-Quality Code 33 / 38

https://bit.ly/335UClK
https://bit.ly/3ktYtC3

Anti-pattern: Not invented here (NIH) syndrome

https://bit.ly/3nApp3K

• Let’s write our own HTTP library; how hard could it be?
• But by reinventing the wheel, I will learn! Or not?
• Possible issues with software licenses or patents
• Beware of blind inclusion of third-party projects (security)

Petr Zemek: High-Quality Code 34 / 38

https://bit.ly/3nApp3K

Recommended reading and summary

Recommended reading

A. Hunt, D. Thomas: The Pragmatic Programmer (2nd edition), Addison-Wesley, 2019
In Czech: A. Hunt, D. Thomas: Programátor pragmatik, Computer Press, 2007

S. McConnell: Code Complete (2nd edition), Microsoft Press, 2004
In Czech: S. McConnell: Dokonalý kód, Computer Press, 2006

R. C. Martin: Clean Code, Prentice Hall, 2008
In Czech: R. C. Martin: Čistý kód, Computer Press, 2009

M. Fowler: Refactoring: Improving the Design of Existing Code (2nd edition),
Addison-Wesley, 2018
In Czech: M. Fowler: Refaktoring: Zlepšenı́ existuj́ıcı́ho kódu, Grada, 2003

K. Beck: Test Driven Development: By Example, Addison-Wesley, 2002
In Czech: K. Beck: Programovánı́ ř́ızené testy, Grada, 2004

S. H. Huseby: Innocent Code, John Wiley & Sons, 2004
In Czech: S. H. Huseby: Zranitelný kód, Computer Press, 2006

Petr Zemek: High-Quality Code 36 / 38

A bit of harmless self-promotion (my blog posts)

Petr Zemek: Čistý kód, který funguje (2009-10-24)

Petr Zemek: Vysoce kvalitnı́ kód (2014-04-18)

Petr Zemek: Důvody, proč psát jednotkové testy (2014-06-20)

Petr Zemek: Zakomentovaný kód (2014-11-02)

Petr Zemek: Proč psát kód na jedné úrovni abstrakce (2015-02-21)

Petr Zemek: Udržitelný vývoj (2015-03-15)

Petr Zemek: Proč rozlǐsovat jednotkové a integračnı́ testy (2015-04-18)

Petr Zemek: Proč vytvářet funkce (2019-07-27)

Petr Zemek: Série ”Chyby v návrhu”

Petr Zemek: Série ”Ještě jednou a lépe”

Petr Zemek: High-Quality Code 37 / 38

https://cs-blog.petrzemek.net/2009-10-24-cisty-kod-ktery-funguje
https://cs-blog.petrzemek.net/2014-04-18-vysoce-kvalitni-kod
https://cs-blog.petrzemek.net/2014-06-20-duvody-proc-psat-jednotkove-testy
https://cs-blog.petrzemek.net/2014-11-02-zakomentovany-kod
https://cs-blog.petrzemek.net/2015-02-21-proc-psat-kod-na-jedne-urovni-abstrakce
https://cs-blog.petrzemek.net/2015-03-15-udrzitelny-vyvoj
https://cs-blog.petrzemek.net/2015-04-18-proc-rozlisovat-jednotkove-a-integracni-testy
https://cs-blog.petrzemek.net/2019-07-27-proc-vytvaret-funkce
https://cs-blog.petrzemek.net/taxonomy/term/61
https://cs-blog.petrzemek.net/taxonomy/term/70

Summary

• High-quality code provides many benefits
• We (as professionals) should strive to write high-quality code
• There are many aspects of high-quality code
• There are techniques that can help us achieving high-quality code
• There are also anti-patterns that hinder our efforts
• Many books have been written on this topic
• Code quality is not binary or absolute
• Perfection is not attainable

Petr Zemek: High-Quality Code 38 / 38

	Introduction
	What to focus on
	Selected techniques
	Anti-patterns
	Recommended reading and summary

