High-Quality Code

Petr Zemek

Lead Software Engineer at Avast
Threat Intelligence at Threat Labs
petrzemek@avast.com
https://petrzemek.net, @s3rvac

£) Avast

Practical Aspects of Software Design, BUT FIT, 2022-05-04

mailto:petr.zemek@avast.com
https://petrzemek.net
https://twitter.com/s3rvac

Outline

Introduction
What to focus on
Selected techniques

Anti-patterns

h’r’rps //b|’r Iy/374qs8m

Recommended reading and summary

Petr Zemek: High-Quality Code | 2/38

https://bit.ly/374qs8m

Intfroduction

A tale of two libraries

© The first library:

® \ery poor documentation

Trouble with compilation because of missing dependencies
Segfaults when given a file without an extension

Calls exit () when encountering an error

Sometimes prints oufput o stdout /stderr

Hard to change because of unreadable code and missing tests

® The second library:

°* Amazing documentation

Seamless integration, automatic resolving of missing dependencies
Crystal-clear interface

Proper error handling and propagation of errors

Readable code that makes modifications a breeze

Code is completely covered by tests

Which one would you use? Which one do you write? ;-)

Pefr Zemek: High-Quality Code | 4/38

What is high-quality code?

e Correct

Robust, anticipates and handles edge cases and errors

Safe and secure

Well designed and organized without being over-engineered
Readable, easy to change, allows sustainable development
Testable and covered by tests

e Thoroughly documented

e Efficient without being prematurely optimized

Notes:
¢ Everything mentioned above is connected
e Code quality is not binary or absolute
e Perfection is not attainable

Petr Zemek: High-Quality Code | 5/38

Why do we strive to write high-quality code?

SRVETIME BY/NOTIRITI)
td HEY | ‘o

¢ To satisfy our users and employers

¢ To save time and money

¢ To prevent catastrophes or security breaches
e Code is written once but read/modified many times https://bit.ly/2RgMMUO
¢ To show that we are frue professionals

e Thinking of your fellow programmers (or your future self)

When you're trying to look at
the code you wrote a month ago

1 CANTREAD IT

https://bit.ly/3s4pdgK

Petr Zemek: High-Quality Code | 6/38

https://bit.ly/2RgMMU0
https://bit.ly/3s4pdgK

How to measure code quality?

Code Quality Measurement:
WTFs/Minute

WTFis
this shit?|

/1

ta WIF

Good Code Bad Code

htp://commadot.com

Another measure: How easy is to correctly change the code.

Pefr Zemek: High-Quality Code | 7/38

What to focus on

Code correctness

What is correctness?

Correctness with respect to what?
Absolutely correct code

Understand functional requirements
Understand non-functional requirements

Pefr Zemek: High-Quality Code | 9/38

Code robustness and error handling

One of the hardest parts of software development
Robust programming

® Paranoia
e Stupidity
® Cannot happen

® Be conservative in what you send, be liberal in what you accept
Anything that might happen will happen, handle all edge cases
Understand what might fail, handle all errors

int fclose(FILE #*stream);

Understand error-handling mechanisms
Propagating errors upwards

Petr Zemek: High-Quality Code | 10/38

Code safety and security

Safety vs security
Buffer overflows, crashes

char buf [BUFSIZE];
std::cin >> buf; // gets (buf);

Thread (un)safety, common concurrency issues
Resource leaks
Improper handling of inputs

$id = $S_GET['id’];
$sgql = "SELECT * FROM users WHERE id = $id";
Sresult = $mysqgli->query ($sql);

Understand common safety and security flaws

Petr Zemek: High-Quality Code | 11/38

Code readability, extensibility, and maintainability

e Great, descriptive naming

e Consistency is key

e Split code into smaller functions/classes

e Keep code at asingle level of abstraction

if ((currentDate() - user.getBirthDate()) >= Years(18))
// vs
if (user.isOldEnoughToDrink ())

Junior devs writing comments:

¢ |Logical organization info functions, classes, etc. \@
¢ High cohesion, low coupling

e Comments explaining why

¢ Understandable is better than clever

e Learn design principles and patterns (e.g. SOLID, GoF)

ke

hitps://oit.ly/3krJzML

Petr Zemek: High-Quality Code | 12/38

https://bit.ly/3krJzML

Code covered by tests

Why do we write tests?
Untested code does not work

Selected types of tests:
® Unitf tests
® Integration tests >
End to end tests ’ o 5
Performance tests j ht
Compatibility tests

=~k

1 | I

e Code coverage DDET lil:]iHI THE COL
e Continuous integration (CI) | WROTE EARLIER WAS RIGE
e Testing the Ul https://bit.ly/3nCt0le

¢ Testing examples in the documentation

‘jn

Petr Zemek: High-Quality Code | 13/38

https://bit.ly/3nCt01e

Testability

e Code has to be testable
¢ Learning how to write festable code takes time
* An example technique: Dependency injection

public class Service {
private DBConn dbConn;

public Service (Config config) {

dbConn = new PostgreSQLConn (configqg);
}

// Vs

public Service (DBConn dbConn) {
this.dbConn = dbConn;
}
}

e Tests improve your code
e Consider writing tests first

Petr Zemek: High-Quality Code | 14/38

Documentation

The bane of programmers

Everybody wants to have it, nobody wants to write it
e User vs development documentation

Important to keep up-to-date

Although outdated documentation is better than
no documentation

https://bit.ly/3vDMPbn

Petr Zemek: High-Quality Code | 15/38

https://bit.ly/3vDMPbn

Knowledge of the used programming language(s)

e Syntax and semantics
Abstractions

e Memory management
e Language idioms

i =0

while 1 < len(items):
print (items[i])
i +=1

vs

for item in items:
print (item)

¢ Different implementations, OS specifics
e Common pitfalls
e Strengths and weaknesses, when to use a particular language

Petr Zemek: High-Quality Code | 16/38

Knowledge of the used libraries

¢ Learn what is provided by standard libraries
¢ Thoroughly read and understand the documentation 4
e Know what lioraries are available (or search) https://bit.ly/3399X52

Petr Zemek: High-Quality Code | 17/38

https://bit.ly/3399X52

Knowledge of miscellaneous topics

Just a few examples:
e Regular expressions
¢ Floating point arithmetic
e Encodings
¢ Time zones
e Cryptography
e Commonly used protocols, such as HTTR, DNS, IP TCP vs UDP
e Concurrency and parallelism, synchronization primitives
e Data structures and algorithms
e Databases
e Operating systems, HW

Petr Zemek: High-Quality Code | 18/38

Interface design

* Make interfaces easy to use correctly and hard to use incorrectly.
- Scoft Meyers
¢ Your public inferface should be crystal clear
e Aim for having a consistent interface
// Inconsistent position of parameters

int fputs(const char xs, FILE xstream);
int fprintf(FILE xstream, const char xformat, ...);

// Inconsistent naming
#include <sstream>
std::stringstream s;

// Duplicities

size_type size () const;
size_type length() const;

Petr Zemek: High-Quality Code | 19/38

Coding conventions

Follow style guides and code conventions

® Spaces vs tabs
® Naming of variables (snake_case VS camelCase)
® Code formatting in general (e.g. placement of curly braces, line wrapping)

Uniformity is king
Pay attention to detail
Check typos and grammar in strings/comments

Petr Zemek: High-Quality Code | 20/38

Performance

e What is an optimization?
Typical optimization areas

® Execution time

°* Memory usage

® Response times

® Throughput

* Network communication

Effectivity vs efficiency

Golden rule: Do not optimize

Understand trade-offs

Always do profiling and perform benchmarks (avoid pessimization)
Do not write needlessly inefficient code

e Know your language, compiler, operating system, architecture, etc.

Petr Zemek: Optimalizace kddu (BUT FIT, 2013)

Petr Zemek: High-Quality Code | 21/38

https://www.youtube.com/watch?v=Pve0iscmlY4

Selected techniques

Pull requests and code reviews

The “lone wolf” workflow:
@ Put all your changes directly info master
(There is no step 2)

A more cautious workflow:
©® Create a new branch from the current master
® Implement the needed change there
® Push the branch and create a pull request (PR) from it
@ Make the PR pass through a code review (CR)
® The PR is approved and the branch is merged info master

Petr Zemek: High-Quality Code | 23/38

What is a pull request (PR)?

e A request to review your changes and merge them
e Most commonly associated with PRs on GitHub:

Parallelize compilation of YARA rules during installation e
(#540) #542

[STPTT] PeterMatula merged 2 commits into master ffom enhancement -yara-rules-conpilation-parallelization-s40 (&3 on Apr 24, 2019

2 Conversation 0 o Commits 2 B Checks 0 Files changed 1 430213 mmmm:

s3rvac commented on Apr 8, 2019 Member @ - Reviewers &

7, PeterMatua v
When you run cmake with -DRETDEC_comPILE vaRa=on (the defaull), YARA rules that RetDec uses -

are compiled during the installation step, which makes decompilations run faster (no need to compile

them on the fly during each decompilation). The issue is that YARA rules are compiled sequentially, Assignees. o
which takes around 50 seconds to compile them on my machine. 7 PeterMatula

‘This PR parallelizes their compilation by using all available cores. Now, the compilation takes around

10 seconds on my machine (Intel Xeon E5-1650 @ 3.60GHz, 6 cores with HT = 12 threads). Labels o
C-bulld-system

1 have implemented the easy way (using all available cores) as | was unable to find a portable

solution of obtaining the value of -3 (when using make) or /n (when sing Visual Studio).

Implements #540.
Milestone &

https://github.com/avast/retdec/pull/542

e Note: Called a merge request (MR) in some systems

Petr Zemek: High-Quality Code | 24/38

https://github.com/avast/retdec/pull/542

What is a code review (CR)?

e A process of looking at another person’s code and checking if it is correct
e Consists of:

© Writing comments towards the code
® Giving evaluation (approve or request changes)
® Discussing comments with the author

Petr Zemek: High-Quality Code | 25/38

Reasons for creating PRs and doing CRs

Finding bugs and other defects

* |earning something new

¢ Increasing the sense of mutual responsibility within your tfeam
Finding a better solution

¢ Running automated checks before the code is merged
Writing better code

e and more...

Petr Zemek: Pull requesty a revize koddu (IVS 2020)

Petr Zemek: High-Quality Code | 26/38

https://www.youtube.com/watch?v=6s5f-0WYb1s

Pair programming

““WHAT ITTOOKS LIKE

¢ Two programmers work together at one workstation
Roles: driver and navigator

¢ |Increased person/hours vs fewer defects
Knowledge sharing

Remote pairing

Mob programming

- e

hitps://bit.ly/3nyhDYe

Petr Zemek: High-Quality Code | 27/38

https://bit.ly/3nyhDYe

Refactoring

e Restructuring existing code without changing
its external behavior

e Code smells

¢ |mproves maintainability and extensibility
* When to refactor

e Requires having tests

¢ Not all changes are refactorings

e https://refactoring.guru/refactoring

https://bit.ly/3vym48c

Petr Zemek: High-Quality Code | 28/38

https://bit.ly/3e7fu2x
https://bit.ly/3vym48c
https://refactoring.guru/refactoring

Test-driven development (TDD)

A software development practice ‘
TDD Cycle

Clean code that works

Leads to testable code
Writing the interface you wish you had TesT psses
Seeing the test fail is important

Do not refactor when your tests are failing
Tests are already written when the code is finished

https://bit.ly/3gQntTm

Petr Zemek: High-Quality Code | 29/38

https://bit.ly/3gQntTm

Anti-patterns

What prevents programmers from writing high-quality code

¢ |nexperience
e Laziness 7
Disinterest, unwillingness to learn https://bit.ly/3u6c1XB
Lack of sense for detail, sloppiness J e
e Bosses or coworkers
Circumstances (e.g. deadlines)

{Codo Quality 2 lime to market

https://bit.ly/3eL0gXh

Petr Zemek: High-Quality Code | 31/38

https://bit.ly/3u6c1XB
https://bit.ly/3eL0qXh

Anti-pattern: Cargo cult programming

A ritual inclusion of code that serves no real purpose

with open(’file.txt’) as f:
data = f.read()
f.close()

e
Copy-and-paste programming https://bit.ly/3gMTCLH
Blind following of practices without understanding why

e Some cargo culting might be unavoidable

public static void main (String[] args)

Petr Zemek: High-Quality Code | 32/38

https://bit.ly/3gMTCLH

Anti-pattern: Voodoo programming

How to actually learn any new programming concept

e Example: if x > 1 (fail)
° if x >= 1 (fail)
® if x >= 0 (fail)
® if x < 1 (pass)

* Another example:

When your code compiles
after 253 failed attempts

Essential

Changing Stuff and

Seeing What Happens

O RLY? @ThePracticalDev

hTTpS://biT.W/SkTYTCS hTTps://biT.ly/SSSUCIK

Petr Zemek: High-Quality Code | 33/38

https://bit.ly/335UClK
https://bit.ly/3ktYtC3

Anfti-pattern: Not invented here (NIH) syndrome

We are
o too busy
/

https://bit.ly/3nApp3K

Let’s write our own HTTP library; how hard could it be?
But by reinventing the wheel, | will learn! Or not?

Possible issues with software licenses or patents

Beware of blind inclusion of third-party projects (security)

Petr Zemek: High-Quality Code | 34/38

https://bit.ly/3nApp3K

Recommended reading and summary

Recommended reading

¥y A Hunt, D. Thomas: The Pragmatic Programmer (2nd edition), Addison-Wesley, 2019
In Czech: A. Hunt, D. Thomas: Programdtor pragmatik, Computer Press, 2007

¥ S. McConnell: Code Complete (2nd edition), Microsoft Press, 2004
In Czech: S. McConnell: Dokonaly kéd, Computer Press, 2006

¥ R. C. Martin: Clean Code, Prentice Hall, 2008
In Czech: R. C. Martin: Cisty kéd, Computer Press, 2009

¥,-: M. Fowler: Refactoring: Improving the Design of Existing Code (2nd edition),
Addison-Wesley, 2018

In Czech: M. Fowler: Refaktoring: Zlepseni existujicino kddu, Grada, 2003

¥, K. Beck: Test Driven Development: By Example, Addison-Wesley, 2002
In Czech: K. Beck: Programovani fizené testy, Grada, 2004

¥ S. H. Huseby: Innocent Code, John Wiley & Sons, 2004
In Czech: S. H. Huseby: Zranitelny kéd, Computer Press, 2006

Petr Zemek: High-Quality Code | 36/38

A bit of harmless self-promotion (my blog posts)

Petr Zemek: Cisty kod, ktery funguje (2009-10-24)

Petr Zemek: Vysoce kvalitni kdd (2014-04-18)

Petr Zemek: Davody, procC psat jednotkové testy (2014-06-20)

Petr Zemek: Zakomentovany kéd (2014-11-02)

Petr Zemek: Pro¢ psat kdd na jedné drovni abstrakce (2015-02-21)
Petr Zemek: Udrzitelny vyvoj (2015-03-15)

Petr Zemek: Pro¢ rozliSovat jednotkové a integracni testy (2015-04-18)
Petr Zemek: Pro¢ vytvéret funkce (2019-07-27)

Petr Zemek: Série “Chyby v n&vrhu”

Petr Zemek: Série “Jesté jednou a lépe”

Petr Zemek: High-Quality Code | 37/38

https://cs-blog.petrzemek.net/2009-10-24-cisty-kod-ktery-funguje
https://cs-blog.petrzemek.net/2014-04-18-vysoce-kvalitni-kod
https://cs-blog.petrzemek.net/2014-06-20-duvody-proc-psat-jednotkove-testy
https://cs-blog.petrzemek.net/2014-11-02-zakomentovany-kod
https://cs-blog.petrzemek.net/2015-02-21-proc-psat-kod-na-jedne-urovni-abstrakce
https://cs-blog.petrzemek.net/2015-03-15-udrzitelny-vyvoj
https://cs-blog.petrzemek.net/2015-04-18-proc-rozlisovat-jednotkove-a-integracni-testy
https://cs-blog.petrzemek.net/2019-07-27-proc-vytvaret-funkce
https://cs-blog.petrzemek.net/taxonomy/term/61
https://cs-blog.petrzemek.net/taxonomy/term/70

Summary

¢ High-quality code provides many benefits

* We (as professionals) should strive to write high-quality code

e There are many aspects of high-quality code

e There are techniques that can help us achieving high-quality code
e There are also anti-patterns that hinder our efforts

e Many books have been written on this topic

e Code quality is not binary or absolute

Perfection is not aftainable

Petr Zemek: High-Quality Code | 38/38

	Introduction
	What to focus on
	Selected techniques
	Anti-patterns
	Recommended reading and summary

