
CTO Python Guild

Celery and Other Distributed Task
Queues In Python

Copyright © 2025 Gen Digital Inc. All rights reserved.

2025-03-28

Petr Z. & Oliver N. & Matúš J.

● Introduction to distributed task queues via Celery

● Celery demo

● Experience with Celery, pros & cons, lessons learned, ...

● Other distributed task queues (with focus on Dramatiq)

● Summary

● Q&A

Outline

Copyright © 2025 Gen Digital Inc. All rights reserved. 2

Introduction to Distributed
Task Queues via Celery

Copyright © 2023 Gen Digital Inc. All rights reserved. 3

What Is a Distributed Task Queue?

Copyright © 2025 Gen Digital Inc. All rights reserved. 4

● An open-source distributed task queue written in Python (homepage)

● The de facto standard Python task queue (ref, 25.8k stars on GitHub)

● Gist: A generalization of the multiprocessing module to multiple machines

● Use case examples:

• Offloading of CPU-heavy or long-running tasks from web/API

• Task queuing/buffering

• Periodic execution of tasks

• Task flows (chain, group, chord, …)

What Is Celery?

Copyright © 2025 Gen Digital Inc. All rights reserved. 5

(source)

https://docs.celeryq.dev/en/latest/index.html
https://www.fullstackpython.com/task-queues.html
https://github.com/celery/celery
https://dev.to/akarshan/the-curious-case-of-celery-work-flows-39f7

How Does It Work?

Copyright © 2025 Gen Digital Inc. All rights reserved. 6

● Supported brokers: RabbitMQ, Redis, Amazon SQS, Zookeeper/Kafka (experim.), GCP Pub/Sub (experim.)

● Supported result backends: Redis, SQL database, RabbitMQ, AWS S3, GCP GCS, and many more

● Supported task serializers: JSON, YAML, Pickle, MessagePack

● Supported worker modes: prefork (process pool), threads, eventlet, gevent

● Written in Python, but the protocol can be implemented in any language (Go, Rust, Ruby, PHP, ...)

• Petr Zemek: Consuming and Publishing Celery Tasks in C++ via AMQP (blog post, 2017-06-25)

● Supports both automatic and custom task routing (including priorities)

● Worker management (inspect/control, dynamic pool growing/shrinking)

● Signals (hooking into the task mechanism)

● Highly configurable (configuration options)

● Flexible / extendable

Other Notes and Features

Copyright © 2025 Gen Digital Inc. All rights reserved. 7

https://docs.celeryq.dev/en/latest/userguide/configuration.html
https://github.com/gocelery/gocelery/
https://github.com/rusty-celery/rusty-celery
https://github.com/skrat/celerb
https://github.com/smuuf/celery-for-php
https://blog.petrzemek.net/2017/06/25/consuming-and-publishing-celery-tasks-in-cpp-via-amqp/
https://docs.celeryq.dev/en/stable/userguide/configuration.html'

Pros:

● Celery provides transparent RPC and result storage

● Celery comes with batteries included (task handling, serialization/deserialization, cron jobs, …)

● Celery provides transparent flexibility for brokers (RabbitMQ, Redis, ...) and result storage (SQL database,
Redis, ...)

Cons:

● Celery is more complex

● Celery supports features that you might not use

● Celery represents yet another dependency (might both decrease as well as increase complexity)

● Inter-language operability can be better with just RabbitMQ / Redis / … (it depends)

Celery vs "Just RabbitMQ / Redis / ..."

Copyright © 2025 Gen Digital Inc. All rights reserved. 8

Celery Demo

Copyright © 2023 Gen Digital Inc. All rights reserved. 9

[redacted]

Celery Demo

Copyright © 2025 Gen Digital Inc. All rights reserved. 10

Experience With Celery, Pros
& Cons, Lessons Learned, ...

Copyright © 2023 Gen Digital Inc. All rights reserved. 11

[redacted]

Experience With Celery, Pros & Cons, Lessons Learned,
...

Copyright © 2025 Gen Digital Inc. All rights reserved. 12

Other Distributed Task
Queues in Python

Copyright © 2023 Gen Digital Inc. All rights reserved. 13

[redacted]

Dramatiq

Copyright © 2025 Gen Digital Inc. All rights reserved. 14

(For comparison, Celery has 25.8k stars and Dramatiq has 4.5k stars.)

● RQ (10.1k stars) - A Python library for queueing jobs and processing them

● APScheduler (6.6k stars) - Task scheduling library for Python

● Huey (5.4k stars) - A task queue for Python

● Rocketry (3.3k stars) - Modern scheduling library for Python

● Django Q (1.9k stars) - A multiprocessing distributed task queue for Django

● TaskTiger (1.4k stars) - Python task queue using Redis

● Taskiq (1.1k stars) - Distributed task queue with full async support

● And there is more (< 1k stars): taskmaster, tasq, kuyruk, django-carrot, …

Other Distributed Task Queues

Copyright © 2025 Gen Digital Inc. All rights reserved. 15

https://github.com/rq/rq
https://github.com/agronholm/apscheduler
https://github.com/coleifer/huey
https://github.com/Miksus/rocketry/
https://github.com/Koed00/django-q
https://github.com/closeio/tasktiger
https://github.com/taskiq-python/taskiq
https://github.com/dcramer/taskmaster
https://github.com/codepr/tasq
https://github.com/cenkalti/kuyruk/
https://github.com/chris104957/django-carrot

Summary and Q&A

Copyright © 2023 Gen Digital Inc. All rights reserved. 16

● General note: They are just another tool

● When to consider using them:

• When the benefits (e.g. transparent RPC) outweigh the disadvantages (e.g. added overhead)

• When you use a technology that integrates well with them (e.g. Celery and Django/Flask)

• When you utilize the features they provide (e.g. task flows in Celery)

• When there is a risk of needing to switch to a different broker or result store

● When you should rather use something else:

• When the multiprocessing / threading / asyncio modules are sufficient (e.g. single machine)

• When using just a message broker is sufficient (consider e.g. just RabbitMQ or Kafka)

• When using just a database or key-value store is sufficient (consider e.g. just PostgreSQL or Redis)

• When building a high performance/throughput system (consider e.g. just socket or ZeroMQ)

• When you need some specific guarantees that are not provided (e.g. transactional task flows)

When (Not) To Use Distributed Task Queues

Copyright © 2025 Gen Digital Inc. All rights reserved. 17

● A distributed task queue is a mechanism to distribute work across multiple machines

● There are many implementations (more than 12 for Python alone...)

● Celery is the de facto standard Python task queue (open-source, 25.8k stars on GitHub)

● It supports multiple types of brokers, result stores, serializers, has many features, is highly configurable, ...

● There are cases when Celery is a better option and cases when just RabbitMQ / Redis / … is better

● [redacted]

● Celery has its own drawbacks: bad defaults, requires config tuning, inefficient task scheduling via RabbitMQ,
not a native technology for the cloud, complexity, no asyncio support, not many new features recently

● Dramatiq is a newer distributed task queue for Python, used as well but with much less experience, various
differences from Celery

● Distributed task queues are a tool and so have both pros and cons and are not suitable for all use cases; think
before you use them!

Summary and Q&A

Copyright © 2025 Gen Digital Inc. All rights reserved. 18

https://github.com/celery/celery

	Slide 1: Celery and Other Distributed Task Queues In Python
	Slide 2: Outline
	Slide 3: Introduction to Distributed Task Queues via Celery
	Slide 4: What Is a Distributed Task Queue?
	Slide 5: What Is Celery?
	Slide 6: How Does It Work?
	Slide 7: Other Notes and Features
	Slide 8: Celery vs "Just RabbitMQ / Redis / ..."
	Slide 9: Celery Demo
	Slide 10: Celery Demo
	Slide 11: Experience With Celery, Pros & Cons, Lessons Learned, ...
	Slide 12: Experience With Celery, Pros & Cons, Lessons Learned, ...
	Slide 13: Other Distributed Task Queues in Python
	Slide 14: Dramatiq
	Slide 15: Other Distributed Task Queues
	Slide 16: Summary and Q&A
	Slide 17: When (Not) To Use Distributed Task Queues
	Slide 18: Summary and Q&A

